
An Approach for Validation, Verification, and
Model-based Testing of UML-based Real-time

Systems

Mehdi Nobakht and Dragos Truscan
Department of Information Technologies, Åbo Akademi University, Turku, Finland

{mehdi.nobakht, dragos.truscan}@abo.fi

Abstract—UML is gaining popularity in designing real-time
systems. However, UML tools often lack support for verification.
This paper describes an approach and a tool in which UML
models used for designing real-time systems are translated into
UPPAAL timed automata in order to take advantage of validation
and verification support in the UPPAAL tool. This allows one to
increase the quality of the UML models by complementing static
validation via OCL with behavioral validation and verification
using the UPPAAL model-checker. Having an implementation
of the system under consideration, the obtained UPPAAL timed
automata serve as input of the UPPAAL-TRON tool to perform
online model-based conformance testing. The proposed approach
also generates a skeleton of the test adapter required to interface
the testing tool and the implementation under test. The approach
and the tool are exemplified with a telecommunication case study.

Keywords—UML; UPAAL; model verification; model-based
conformance testing; real-time systems.

I. INTRODUCTION

Unified Modeling Language (UML) [1] is a standardized
general-purpose modeling language originally designed for the
object-oriented paradigm. UML has also been suggested for
designing embedded and real-time systems. It has been gaining
popularity and is familiar to most designers and developers in
this class of systems [2]. A key advantage of UML is the
hierarchical mechanism giving a high degree of modularity
and encapsulation to the model. It is particularly useful for
modeling the behavior of complex systems. Moreover, an
increasing number of UML tools provide code generation
facilities which has increased its popularity further.

Once a real-time system is designed using UML, there
is a need to ensure that the model conforms to the system
specification. Model validation and verification methods aim
at finding possible discrepancies between a system model and
the corresponding specification at an early design stage. The
Object Constraint Language (OCL) [3] is a formal language to
supplement UML for detecting both syntactic inconsistencies
and, to a limited extent, semantic ones in the models. While
UML is particularly promising in designing embedded and
real-time systems, it lacks support for verification of the timing
and schedule related properties.

Testing is the pivotal part of real-time systems development
process, being used to ensure that a product meets its require-
ments. This way, it helps to increase the quality of the product.
Model-Based Testing (MBT) [4] is a testing technique which
automatically generates tests from the behavioral specifications

of the System Under Test (SUT). Depending on how tests are
generated and executed, there are two flavors of MBT; in offline
testing, the test cases are generated before the execution step,
whereas through online testing both steps are integrated [5].

The work presented in this paper proposes an approach for
validation, verification, and online model-based conformance
testing of real-time systems which are designed using UML.
In our approach, in order to compensate for the lack of formal
and executable semantics of UML, the UML models includ-
ing class and state machine diagrams are translated into the
UPPAAL timed automata and later on validated and verified
using the UPPAAL model-checker tool [6]. The translation
is automated by a tool which beside creating the UPPAAL
specifications, it propagates requirement information from the
UML models to the UPPAAL timed automata and generates
deadlock free and reachability queries for verification pur-
poses. In addition, it generates a tester adapter stub required
to interface UPPAAL-TRON – an online model-based testing
tool [7] – and the Implementation Under Test (IUT).

Overview. The information presented in this paper will
appear in the following order: Section II contains the works
related to verification methods for the UML-based designs of
real-time systems. Section III provides a background to the
theory of timed automata, the semantics of timed automata as
used by the UPPAAL toolbox, and the underlying principles
of TRON. Section IV initially provides a UML solution for
designing real-time systems explaining UML notation of static
structures and timed state machines. Then, it describes the
principles of our approach for translation of a UML model into
UPPAAL timed automata and the tool support to automate the
translation process. Section V describes a real telecommunica-
tion case study to demonstrate applicability of our approach. In
addition, it describes the TRON test setup to perform model-
based conformance testing. Section VI concludes the paper,
while discussing future work.

II. RELATED WORK

In the context of the UML model validation, Richters and
Gogolla [8] propose the USE animation-based tool for valida-
tion of UML models and OCL constraints. We propose using
the UPPAAL tool which integrates validation and verification
processes. Later on, the obtained UPPAAL timed automata can
also be used as input to the UPPAAL-TRON testing tool for
test generation.



Work on verification of the UML-based design of real-time
systems has been published by several authors. Similar to our
approach, many of these authors base their approaches on the
UPPAAL model checker and on the translation of UML to
the input language of the UPPAAL, but in general they use
different elements of UML.

A translation of the UML timed sequence diagrams into
UPPAAL timed automata has been presented by Firley et
al. [9]. Sequence diagrams specify required sequence of mes-
sage between objects, but they are too weak to specify stronger
properties like state invariants. In contrast, our approach uses
class and state machine diagrams which are richer in express-
ing the system properties.

Similar to our work, Ober et al. [10] use class diagrams and
state machine diagrams to capture the structure and the behav-
ior of the system respectively. They utilize the IF toolset [11]
to analyze the model and propose a translation from UML
1.4 to input language of IF, though no implementation of
IF seems to be available. David et al. [12] suggest the time
extension of the state diagram by adding clocks, timed guards,
and invariants. However, their approach mainly focuses on
flattening the hierarchical timed automata. Moreover, the event
communication between processes has to be coded by hand.

A prototype tool called Hugo/RT has been presented by
Knapp et al. [13]. It uses UML collaboration (sequence
diagram) with time constraints and a set of timed UML
state machines as input for the tool. However, their approach
has several limitations. Most prominently, the input/output
events between IUT and its environment model cannot have
parameters. Muniz et al. [14] discussed an approach for
verification of real-time systems represented for the CORBA
component model. In their approach, UPPAAL is deployed
for verification purposes and their tool called TANGRAM
takes UML component and state machine diagrams to generate
the equivalent UPPAAL timed automata. They extended the
component diagram with a stereotype to model event passing
between components. This mechanism does not allow to have
parameterized events like [13]. Compared to these approaches,
we use the UML interface element to model parameterized
event passing.

III. BACKGROUND TO TIMED AUTOMATA AND UPPAAL

A. Timed Automata

According to theory of timed automata [15], a timed
automaton is a non-deterministic finite state machine accom-
panied with clock to express timing properties. Clocks can be
set to zero and their value increases linearly with time. At
any instant, the value of a clock is equal to the time elapsed
since the last time it was reset. The state of a system of timed
automata includes the control state, variables and the clocks.
Execution of timed automata are infinite sequences of system
states that fulfil the invariants which may be either the passing
of time or running of transitions. A transition is enabled
either separately or synchronized with another automaton.
The transition is taken when the associated time constraint
is satisfied and its guard expression evaluates to true in the
system state.

B. UPPAAL

UPPAAL is a tool-suite for modeling and model checking
of real-time systems. It uses an extended version of timed au-
tomata, called UPPAAL Timed Automata (UPTA), to specify
a system as a network of timed automata consisting locations
and transitions. The behavior of the system is expressed by
transitions (called edges in UPPAAL) between these locations.
UPPAAL enriches the notion of timed automata by allowing
to declare bounded integer variables in a automaton locally
either or globally. Structured data types, user defined functions,
binary channel synchronization, and broadcast channels are
other UPTA extensions to timed automata. Moreover, it defines
urgent and committed locations. In urgent location time is not
allowed to pass as long as the location is active. Additionally,
leaving the committed location has precedence over other
possible transitions.

The channel synchronization between processes is denoted
with a? for the sending process, and with a! for the receiving
process. This way, several transitions are enabled simultane-
ously, but the assignment(s) in the sending automaton (with
a! label) is executed before the receiving automaton (with a?
label). This enables communication in a network of concurrent
automata with the help of global variables. Value assignment
and clock resetting can be two possible actions when a transi-
tion is enabled. It has to be noted that a transition is not taken
when the resulting system state would not satisfy the associated
invariant with the target location. The next system state is
achieved by updating the control states of the timed automata
involved in the transition by performing its defined actions.
Furthermore, UPPAAL uses the idea of invariant which is a
progress condition imposed on the location, that is, the system
is not allowed to stay in the location more than the value
mentioned by the invariant.

C. UPPAAL-TRON

The UPPAAL-TRON tool – or simply TRON – is an
extension to the UPPAAL tool for conformance testing of real-
time systems, designed according to relative timed input/output
conformance relation (rtioco) [5]. The test specification in
TRON is partitioned into a model of the environment and
a model of the SUT. These two models communicate using
input/output channels. TRON attaches to the IUT via a test
adapter which is a physical interface to enable communication
between the testing tool and an implementation under test.

IV. DESCRIPTION OF THE APPROACH

Throughout this section, we describe the main features
of our approach to translate a UML model of a system,
including class diagram and state machines into UPPAAL
timed automata. More practical details and concrete examples
can be found in [16].

A. UML Modeling

A real-time system interacts with its environment via in-
put/output actions (from SUT’s perspective). This work utilizes
two types of UML diagrams to represent a real-time system
and its environment: 1) a class diagram, describing SUT
and its test system environment, and 2) the corresponding



(a) Class diagram specifying SUT and its environment (b) State machine diagram describing behavior of SUT

Figure 1. Abstract UML model of a system.

state machine diagrams specifying the behavior of each class
element.

The class diagram describes the entities involved in a test
process: SUT and its environment testing system which are
communicating using dedicated protocols. SUT is a real-time
system taking input form the environment via communica-
tion networks and producing output to it. In our approach,
class elements are used to represent all entities in a system
which typically consists of SUT and its environment. We also
deployed two model elements using stereotype extensibility
mechanism in UML to distinguish SUT and its environment
testing system in the system architecture model rendered as
«SUT» and «ENV» respectively. The defined stereotypes are
derived from the base element in UML. In our approach,
all classes have to be stereotyped before proceeding to the
translation into UPTA. We also allow for several classes to be
stereotyped as SUT or as environment. At the testing time, the
partitioning will be used for identifying the test interface.

We specify communication between entities via interface
elements containing a set of operations. The interface specifies
the operations which a given class (supplier) can provide to
other classes (clients). The class can have attributes of type
integer or char. The latter are used to define clocks in
our UML model. Figure 1 shows an illustrative example of a
system model including a SUT and its environment. The archi-
tecture of the system is depicted by the class diagram in Fig-
ure 1a, showing two class elements named Test_Environment
and System_Under_Test. The Test_Environment sends a re-
quest message to System_Under_Test via input interface, and
receives a response message accordingly.

Each class has associated state machine describing the
behavior of the class element in terms of states and transitions.
Figure 1b describes the dynamic behavior of SUT showing an
initial state and two simple states state_1 and state_2. A state
can have time invariant specified as Boolean expression, (e.g.,
the SUT state machine is not allowed to stay in state_2 more
than constant time units after entering the state).

Events are triggers of transitions between states and re-
sponse actions become effects on the transitions. In real-time
systems, an event can be either call event or time event
to trigger a transition. A fully defined transition includes a
trigger, a guard, and an action. UML uses the following syntax
for transitions:

event trigger(parameters)[guard]/action(s)

The guard condition is a Boolean expression which has to be
met in order to fire the transition. The actions are executed
only if the transition is taken. Transitions without any explicit
trigger are triggered by an implicit completion event which
occurs when all activities of the source state have been
finished. In fact, it is handled like a time event with duration
of 0 time units.

Specifying requirements. Requirements are modeled using
SysML requirements diagram [17] and linked to different tran-
sitions in state machines, with the purpose of showing which
requirements are fulfilled when a certain state is reached.
An example of the approach can be found in [18]. For
readability, in this paper, generic requirements are attached
to transitions via a UML comment elements. For instance, in
the state machine in Figure 1b, Req 1.1 is achieved when the
corresponding transition is taken and the state machine enters
state_2.

B. Translation from the UML model into UPTA

A translation from UML models of real-time systems
including class and state machine diagrams into UPTA consists
of several steps as described below. Each step produces certain
artifacts of UPTA.

1) Class element: class elements in class diagrams rep-
resent test entities in a test process. A class element in a
UML class diagram whose behavior is defined by a state
machine, is encoded by a timed automaton. Timed automata
are represented by templates in UPPAAL. Templates are in
turn instantiated to constitute the actual model.

2) Interface and interface usage: A set of interface oper-
ations in the UML model is used as means of communica-
tion among test entities. The corresponding communication
between templates in UPPAAL is represented by channel
synchronizations. Each operation in an interface is translated
into a binary synchronization channel in UPTA. The class
element that realizes interfaces acts as the receiving automaton,
whereas the class element that uses the interface acts as
sending automaton. In addition, a list of interfaces in test
adapter is created according to the interfaces between IUT and
its environment. This list is used to generate Java source code
including all input/output entries used by I/O handler as will
be discussed later.



(a) Declaration of SUT and its ENV (b) SUT template

Figure 2. UPPAAL model of the example system.

3) Attributes: Class elements in UML class diagrams are
inspected and for each attribute of integer type, a constant
or an integer variable is declared in UPTA. For simplicity,
all attributes with integer data type are declared globally in
UPTA. UPPAAL only supports integer data types either as
constants or variables. This approach takes advantage of this to
represent char data type variables in class attributes as clocks.
Consequently, these char variables are translated into the
locally declared clocks of the corresponding timed automaton.

4) Superstates: In general, for each state in a UML state
machine diagram, a single location is considered in a template.
Initial and final pseudo-states in the UML state machine
determine the initial and the final locations of the template,
respectively.

5) Transitions: Each UML transition is represented by
one or a sequence of edges in UPTA. Pertinent guards of a
transition are copied appropriately to edge properties in UPTA.
The trigger and effect actions of a transition are translated as
receiving and sending binary synchronization channel respec-
tively. In case a transition consists of a trigger and an effect
action, it will be transformed by two edges and one urgent
location in-between which the first edge is synchronized with
the trigger and the second edge is synchronized with the effect
action.

6) Requirements: Transitions in the UML model may have
associated requirements. These requirements can be formulated
as reachability properties and verified in UPPAAL. In addition,
each requirement is translated into an auxiliary variable of type
integer (initialized to 0) and attached on the corresponding
edge in UPTA. These auxiliary variables are used during test
generation for recognizing the coverage level or by formulating
a property checking that an intended state can be reached or
not.

7) Hierarchical state: UPPAAL does not support hierar-
chical locations. Thus, there is a need to flatten eventual
hierarchical states in the UML state machines. This can be
achieved by encoding hierarchical states as states of a flat
timed automaton. Hierarchical states are replaced with several
simple states so that the behavior of the system remains the
same. Initial and final pseudo-states of sub-state machine are
translated to committed locations in UPPAAL templates, and
then, the transitions to and from sub-state machine are mapped
to the corresponding committed locations.

C. Tool support

The transformation defined above is generic and can be
used in conjunction with any UML based approach which
follows the same modeling principles. To automate the trans-
formation, a tool has been developed in Python as a Mag-
icDraw [19] plug-in. As such, the transformation can be di-
rectly invoked from the GUI of MagicDraw and automatically
produces equivalent UPTA and test adapter. An example of
applying these transformations steps to the models in Figure 1
is shown in Figure 2.

V. THE LTE CONTROL-PLANE CASE STUDY

The applicability of our approach is demonstrated in a case
study on the Long Term Evolution (LTE) [20] interface for
cellular mobile telecommunication systems. The LTE network
consists of the access network and the core network. Evolved
Universal Terrestrial Radio Access Network (E-UTRAN) is
the radio access network technology and Evolved Packet Core
(EPC) is the core part. Together, they form the Evolved Packet
System (EPS). The EPC consists of Packet Data Network
Gateway (PDN-GW) router and Mobility Management Entity
Serving Gateway (MME/S-GW) router. The latter is split into
two parts: Mobility Management Entity (MME) – managing
the control plane and tracking user equipment; and Serving
Gateway (S-GW) – dealing with user plane IP packets. The
E-UTRAN NodeB (eNodeB) network element is a central

Figure 3. LTE Overall Architecture [20].



(a) The MME state machine (b) The MME attach sub-state machine

Figure 4. Dynamic Behavior of MME.

network element in the LTE infrastructure whose main func-
tionality is to connect a User Equipment (UE) (e.g., a mobile
phone) to the MME. The interface between the UE and the
eNodeB is a radio interface, while the interface between
eNodeB and MME, called S1AP, often is a fiber optic; refer
to Figure 3.

Here, the main focus is on specific parts of the LTE control
plane focusing on Initial Attach and Tracking Area Updat-
ing procedures from the EPS Mobility Management (EMM)
layer from the None Access Stratum (NAS) protocols [21].
NAS is the highest stratum of the control-plane between the
UE and the MME accounting for mobility management and
session management. We designed a UML model to reflect
the structure of UE and MME, and to express the behavior
of aforementioned procedures, which are represented by class
and state machine diagrams respectively. Implementations of
the UE and of the MME were developed according to the UML
model; however, only the MME will be used as SUT in this
paper.

The main goals of the case study are: 1) to validate and
verify the UML models of these two procedures regarding the
NAS protocol requirements using the UPPAAL tool, and 2) to
perform timed model-based conformance testing against the
implementation of MME using TRON in order to determine
whether the implementation conforms to the models.

A. EMM specific procedures

The Initial Attach procedure creates UE context when a
UE is turned on and attaches to the network. According to
Section 5.5.1 of the NAS Protocols, the UE sends a NAS
Attach Request message to the MME via the eNodeB, starts
timer T3410. The Attach Request reception in the MME is
acknowledged with Attach Accept message and followed by
starting timer T3450. Reception of the Attach Accept message
by the UE causes to stop timer T3410. If timer T3410 expires
prior to receiving an Attach Accept, the attach procedure
is restarted. The MME also triggers the update location
procedure, as well as the route establishment procedure. It
communicates with Home Subscriber Server (HSS) and Home
Location Register (HLR) in the update location procedure.
S-GW is another entity that the MME communicates with

it for route establishment procedure. After the bearers in
the core network have been established, The MME tries to
establish user-plane transport functions on interface between
the UE and the eNodeB, as well as interface between the
eNodeB and the MME. After establishment of user-plane, the
UE sends Attach Complete message to the MME in order
to confirm the assignment of user-plane tunnel. The MME
supervises the reception of the Attach Complete by T3450
timer. However, in this case study, our main focus is on NAS
protocols between MME and UE, making eNodeB, HSS, HLR,
and S-GW irrelevant.

Based on Section 5.5.3 of the NAS Protocols, the UE must
periodically perform tracking area updates procedure in order
to update the registration of its actual tracking area in the
network. This procedure is controlled in the UE by means
of timer T3412. When timer T3412 expires, the tracking area
update is started by sending Tracking Area Update Request to
the MME. If this request has been accepted by the network,
the MME shall send a Tracking Area Update Accept to the UE.
The MME supervises the periodic tracking area updating pro-
cedure of the UE by mobile reachable timer which according
to the protocol is 4 minutes greater than timer T3412. Upon
expiry of the mobile reachable timer, the MME considers the
UE to be inactive and performs Detach procedure to cancel
the registration of this particular UE.

B. UML models for SUT and the environment

Here, we assume that the MME acts as SUT and the UE
as its environment. However, having the implementation of
both entities allows changing their role. Figure 4 displays the
UML model for behavior of MME to support initial attach
and tracking area updating procedures. The MME model is
designed according to the procedures defined in the NAS
protocols specification as explained earlier. The state machine
of the MME in Figure 4a shows a hierarchical state named
EMM_Attach. This gives modularity to the model and makes
it easier to follow. The sub-state machine itself consists of
one initial state, one final state, and two simple states, as
presented in Figure 4b. The comment elements on the MME
state machine named Req 5.5.1 and Req 5.5.3 express
clearly the satisfying condition for the initial attach and
tracking area updating procedures respectively.



C. Generating the UPPAAL model

Once the UML model of MME and UE includes all the
necessary elements, it serves as input of the transformation tool
to generate an equivalent UPTA using our tool. The resulting
MME automaton in Figure 5 corresponds to the MME state
machine in Figure 4 and exhibits the same behavior. It is worth
mentioning that the hierarchical state machine in Figure 4 has
been flattened automatically by the tool and included in the
automaton of its parent.

1) Validation: The simulator tab of UPPAAL allows ex-
ploring the UPTA in a guided or random fashion without being
exhaustive. When the simulation tab is selected, prior to the
simulation phase, UPPAAL performs syntax checking which
validates the UPTA with regard to consistency, correctness,
and completeness. Once the syntax checking has succeeded,
the UPPAAL simulator allows following the execution of
the models visually, checking the instantaneous states and
variables, and inspecting the communication trace between the
UE and the MME parallel processes.

2) Verification: Different properties of the resulting model
can be verified in UPPAAL. These properties are specified as
queries written using a simplified version of Timed Computa-
tion Tree Logic (TCTL) [22]. The UPPAAL query language
consists of the path and the state formulas. The path formulas
quantify the paths or the traces of a UPTA with temporal logic,
while state formulas describe individual states with regular
logical operators.

As mentioned in the previous sections, our UML to UPTA
translation automatically creates two types of queries. Firstly,
we generate ’no deadlock’ query to facilitate checking of this
property in the system model.

A[] no deadlock

Secondly, we generate queries for checking the reacha-
bility property for the states whose incoming transition are
tagged with the comment element. In our case study, the
following query was produced by our tool, according to Req
5.5.1 in Figure 4, and used by UPPAAL verifier to check
whether the MME automaton eventually reaches the location
EMM_Registered.

E<> MME.EMM_Registered

However, the reachability property does not guarantee the
correctness of a system model, i.e., it just checks the basic be-
havior of the system model by performing such sanity checks.
For instance, when the MME automaton enters the location
EMM_Deregistered after the registration of a UE, the mobile
reachable timer must have been expired. This requirement can
be expressed with the following safety property:

A[] MME.EMM_Deregistered imply
MME.c >= MobileReachableTimer

D. TRON Test setup

The test setup for the MME entity of LTE includes TRON
engine and its internal Socket Adapter, the TCP/IP Socket
with input/output handler, and an implementation of MME as
shown in Figure 6. The I/O Handler translates abstract inputs

Figure 5. The MME UPPAAL Template.

from TRON into concrete physical actions for the IUT. On the
other hand, it recognizes physical output of the IUT and then
encodes it into proper abstract message readable by TRON.
The I/O Handler communicates with the TCP/IP Socket and
the IUT via function calls. Communication between TRON
built-in adapter and MME is done via TCP/IP.

Inputs in the implementation model are AttachRequest,
AttachComplete, and TAUrequest and outputs correspond to
AttachAccept and TAUaccepted, refer to Figure 5. TRON
derives test cases directly from the environment model by
choosing one of the possible inputs within allowed time delay
at each state using the UPPAAL engine. It then executes them
against an IUT and observes the output. Finally, it evaluates
the correctness of a test experiment based on the model of
IUT and determines the test verdict. Since TRON is an online
testing tool, it keeps the connection to the IUT in real-time
when performing all of the test procedure steps.

VI. CONCLUSIONS AND FUTURE WORK

The proposed approach is aimed at increasing the quality
of UML-based models of real-time systems via validation and
verification using UPPAAL. For this purpose, we suggested an
approach in which UML specifications are created and subse-
quently transformed into UPPAAL timed automata. Whenever
a problem is discovered in the UPTA specifications, the UML
model is updated and then re-transformed. Using this approach
allows using UML and UPTA in a complementary fashion.

At UML level, our approach allows one to clearly identify
the SUT and the test environment and to model their behavior
and the communication interfaces. Via a set of mappings,
we translate these models into UPTA. The translation also
propagates requirement-related information which is then used
to generate reachability properties.

The resulting UPTA specifications are also used for test
generation using the TRON tool, which allows for generating
and executing tests in timely fashion. One overhead of setting
up the online MBT toolchain is the creation of the test adapter,
which requires an initial investment followed by relatively



Figure 6. Specific TRON setup.

small updates each time the interfaces of the SUT is updated.
In order to cut down on this initial investment, we generate a
skeleton of the adapter during the transformation as described
in [16]. Using TRON for model-based conformance testing, we
managed to uncover a number of bugs in the implementation
of MME which were addressed accordingly.

One current limitation of our approach is its scalability.
Increasing the complexity of the specifications may result in
a state space explosion in UPPAAL during verification and
test generation. Although some ad-hoc optimizations can be
considered to avoid this problem, we plan to search for a more
systematic approach in future work.

In this study, we restricted ourselves to a limited set of
UML model and extend this with real-time elements such as
clock and state invariant. The clock expression in the UML
state machine using the char data type is rather limited.
Further research in this context will look into a more elaborated
modeling of time and clock in UML. In addition, we will
investigate how more UML diagram types can be included in
our approach.

REFERENCES

[1] (2013, August) Documents associated with unified mod-
eling language (UML), version 2.4.1. [Online]. Available:
http://www.omg.org/spec/UML/2.4.1/

[2] L. Lavagno, G. Martin, and B. V. Selic, UML for Real: Design of
Embedded Real-Time Systems. Secaucus, NJ, USA: Springer, 2003.

[3] (2013, August) Documents associated with object con-
straint language (OCL), version 2.3.1. [Online]. Available:
http://www.omg.org/spec/OCL/2.3.1/

[4] M. Utting, “The role of model-based testing,” in Verified Software:
Theories, Tools, Experiments, ser. LNCS. Springer, 2008, vol. 4171,
pp. 510 – 517.

[5] A. Hessel, K. G. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson,
and A. Skou, “Testing real-time systems using UPPAAL,” in Formal
Methods and Testing, ser. LNCS. Springer, 2008, vol. 4949, pp. 77–
117.

[6] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on UPPAAL,”
in Formal Methods for the Design of Real-Time Systems, ser. LNCS.
Springer, 2004, vol. 3185, pp. 200–236.

[7] K. G. Larsen, M. Mikucionis, B. Nielsen, and A. Skou, “Testing
real-time embedded software using UPPAAL-TRON: An industrial
case study,” in Proc. 5th ACM international conference on Embedded
software, Jeresy, NJ, USA, September 2005, pp. 299–306.

[8] M. Richters and M. Gogolla, “Validating UML models and OCL
constraints,” in «UML» 2000 - The Unified Modeling Language, ser.
LNCS. Springer, 2000, vol. 1939, pp. 265–277.

[9] T. Firley, M. Huhn, K. Diethers, T. Gehrke, and U. Goltz, “Timed se-
quence diagrams and tool-based analysis - a case study,” in «UML» ’99
- The Unified Modeling Language, ser. LNCS. Springer, 1999, vol.
1723, pp. 645–660.

[10] I. Ober, S. Graf, and I. Ober, “Validating timed UML models by
simulation and verification,” International Journal on Software Tools
Technology Transfer, vol. 8, no. 2, pp. 128–145, 2006.

[11] M. Bozga, J.-C. Fernandez, L. Ghirvu, S. Graf, J.-P. Krimm, and
L. Mounier, “IF: An intermediate representation and validation environ-
ment for timed asynchronous systems,” in FM ’99 - Formal Methods,
ser. LNCS. Springer, 1999, vol. 1708, pp. 307–327.

[12] A. David, M. O. Möller, and W. Yi, “Formal verification of UML
statecharts with real-time extensions,” in Fundamental Approaches to
Software Engineering, ser. LNCS. Springer, 2002, vol. 2306, pp. 218–
232.

[13] A. Knapp, S. Merz, and R. Christopher, “Model checking - timed
UML state machines and collaborations,” in Proc. 7th International
Symposium on Formal Techniques in Real-Time and Fault-Tolerant
Systems, Oldenburg, Germany, September 2002, pp. 395–416.

[14] A. L. N. Muniz, A. M. S. Andrade, and G. Lima, “Integrating UML
and UPPAAL for designing, specifying and verifying component-based
real-time systems,” Innovatioin in Systems and Software Engineering,
vol. 6, no. 1-2, pp. 29–37, 2010.

[15] R. Alur and L. D. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol. 126, no. 2, pp. 183–235, 1994.

[16] M. Nobakht and D. Truscan, “Tool support for transforming UML-
based specifications to UPPAAL timed automata,” Turku Centre for
Computer Science (TUCS), Tech. Rep. 1087, June 2013. [Online].
Available: http://tucs.fi/publications/view/?pub_id=tNoTr13a

[17] (2013, August) Documents associated with systems mod-
eling language (SysML), version 1.3. [Online]. Available:
http://www.omg.org/spec/SysML/1.3/

[18] F. Abbors, D. Truscan, and J. Lilius, “Tracing requirements in a model-
based testing approach,” in Proc. First International Conference on
Advances in System Testing and Validation Lifecycle. Porto, Portugal:
IEEE Computer Society, September 2009, pp. 123–128.

[19] (2013, August) MagicDraw webpage on NoMagic. [Online]. Available:
http://www.nomagic.com/products/magicdraw/

[20] ETSI TS 136 300 Evolved Universal Terrestrial Radio Access (E-UTRA)
and Evolved Universal Terrestrial Radio Access (E-UTRAN); Overall
description; Stage 2, ETSI Std., Rev. V8.4.0, 04 2008.

[21] ETSI TS 124 301 Universal Mobile Telecommunications System
(UMTS); LTE; Non-Access-Stratum (NAS) protocol for Evolved Packet
System (EPS); Stage 3, ETSI Std., Rev. V8.10.0, 06 2011.

[22] R. Alur, C. Courcoubetis, and D. Dill, “Model-checking for real-time
systems,” in Proc. Fifth Annual IEEE Symposium on Logic in Computer

Science, ser. LICS ’90, 1990, pp. 414–425.


