
A Host-based Intrusion Detection and Mitigation
Framework for Smart Home IoT using OpenFlow

Mehdi Nobakht
Data61 | CSIRO, Australia and

University of New South Wales (UNSW)
Syndey, Australia

Email: mehdi.nobakht@data61.csiro.au

Vijay Sivaraman
University of New South Wales (UNSW)

Syndey, Australia
Email: vijay@unsw.edu.au

Roksana Boreli
National ICT Australia (NICTA)

Syndey, Australia
Email: roksana.boreli@nicta.com.au

Abstract—Smart devices are gaining popularity in our homes
with the promise to make our lives easier and more comfortable.
However, the increased deployment of such smart devices brings
an increase in potential security risks. In this work, we propose an
intrusion detection and mitigation framework, called IoT-IDM, to
provide a network-level protection for smart devices deployed in
home environments. IoT-IDM monitors the network activities of
intended smart devices within the home and investigates whether
there is any suspicious or malicious activity. Once an intrusion is
detected, it is also capable of blocking the intruder in accessing
the victim device on the fly. The modular design of IoT-IDM gives
its users the flexibility to employ customized machine learning
techniques for detection based on learned signature patterns of
known attacks. Software-defined networking technology and its
enabling communication protocol, OpenFlow, are used to realise
this framework. Finally, a prototype of IoT-IDM is developed
and the applicability and efficiency of proposed framework
demonstrated through a real IoT device: a smart light bulb.

Keywords—Internet of Things (IoT); Smart-home; SDN; Open-
Flow; Machine learning; Anomaly detection; Attack mitigation

I. INTRODUCTION

The phenomenon of the Internet of Things (IoT) is about
connecting devices over the Internet. There are many ap-
plications of IoT in different fields ranging from industry
automation and education to smart homes and smart cities. In
its home application, consumers are able to control and manage
smart appliances within and outside the home. As such these
smart devices bring intelligence to our traditional appliances
by incorporating computational and network capabilities and
employing sensors and actuators. In a more advanced smart
home, smart appliances can be programmed to operate au-
tonomously, e.g., a smart fridge can monitor its contents and
automatically order foods online when stocks are running low.
IoT devices are becoming more pervasive and being flooded
into the market at a large scale. According to a prediction by
Cisco’s Internet of Things Group, there will be over 50 billion
connected devices by 2020 [1], outnumbering the entire world
population by 6.5.

While these smart devices promise to make our lives
easier, they also raise a set of security and privacy concerns.
Technically savvy adversaries can gain access to smart home
appliances and utilities and create emergent threats to people’s
possessions. A report by the BBC, for example, warned of
how thousands of baby monitors are accessible to anyone from
the Internet [2]. These security exposures may arise due to a

number of different factors such as insufficient authentication
and authorization, lack of transport encryption and insecure
firmware. Thanks to cheap hardware and open source software,
making IoT devices is not hard today. Indeed, there are hun-
dreds of IoT-related companies manufacturing these devices.
However, as revealed in an HP report [3], security is not taken
seriously in the development of many of these devices. The
report was part of Open Web Application Security Project
(OWASP) that reviewed 10 popular IoT devices ranging from
TVs and remote power outlets to door locks and scales. The
results of this study showed the high average number of
vulnerabilities per device. Regardless of these vulnerabilities,
even a more secure IoT device might be compromised when
it is managed poorly due to the lack of its user’s expertise.

As the lack of security and privacy properties raise con-
cerns in deploying such smart appliances throughout our
homes, it is crucial to monitor the events occurring in today’s
home networks and analysing them for signs of potential secu-
rity risks associated with these devices. Once a security attack
is identified, it is also necessary to consider a proper defence
mechanism to stop the adversary from having a harmful effect.
One possible approach for securing the myriad smart devices
within the home is to redesign and embed security agent inside
them. However, such an approach would not scale, nor would
be affordable. This motivates us to propose a framework that
will be capable of detecting and mitigating security threats
within smart home environments at network-level, whereby
it does not require any amendment to their design. To this
end, we propose utilizing the capabilities of Software-defined
Networking (SDN) architecture and in particular OpenFlow
protocol to realise this framework. The main contributions of
this study are summarized below.

• We propose a host-based Intrusion Detection and
Mitigation framework called IoT-IDM, which provides
computer security services for risks associated with
smart IoT devices within the home. IoT-IDM har-
nesses (i) the advent of SDN technology, which offers
network visibility and provides flexibility to configure,
manage and secure the network remotely and (ii) the
maturity of machine learning techniques in detection
of network anomaly patterns.

• We implement IoT-IDM in Java as module in Flood-
light; a well-known SDN controller.

• Finally, we demonstrate the applicability of IoT-IDM



by conducting a case study through a popular smart
lighting system. The results show that our framework
works well and incurs limited computation and com-
munication overhead.

The rest of this paper is organized as follows. Relevant
prior work is summarized in § II. § III provides a background to
IDS and OpenFlow. A high-level overview of IoT-IDM is given
in § IV followed by a description of the principal components
of it. We describe our prototype implementation in § V. In § VI,
we describe a real smart home IoT device to demonstrate the
applicability of our approach. Then, we evaluate the feasibility
of IoT-IDM in § VII and finally the paper concludes in § VIII.

II. RELATED WORK

Smart home environments are envisaged as a key part of
IoT applications. The widespread adoption of smart devices
throughout today’s homes led researchers focus on security
and privacy properties of home technologies and evaluate the
level of such important properties as security breaches within
home technologies will result in variety of harmful impacts on
end users. In this section, we first survey the risk associated
with home-based IoT, then look at early research on securing
IoT in general, home-based IoT, and using SDN to provide
security.

A. Risk Analysis

There are several research endeavours in the community
focusing on risk analysis of IoT and its home application to
gauge the impact of security attacks against them. Denning
et al. [4] survey potential security attacks against home-based
IoT and provide a structure for reasoning about the different
security needs. They consider various attack scenarios against
such smart devices including traditional attacks as well as
novel attacks that are not viable with traditional computing
platforms. Furthermore, they propose an informative frame-
work to evaluate a risk posed by in-home IoT based on three
components: the feasibility of an attack on the system, the
attractiveness of the system as a compromised platform, and
the damage caused by executing a successful attack. The
human assets and security goals are two elements used in their
work to reason the impact of potential attacks. The advantage
of this paper is the evaluation of the risks associated with smart
home devices. However, they do not elaborate the proposed
framework to evaluate traditional attacks.

Andreas et al. [5] review the state of the art in the context of
smart home IoT security and privacy, and apply a risk analysis
to evaluate smart home automation system vulnerabilities and
threats and their potential impact. They used Information
Security Risk Analysis (ISRA) method by Pelrier [6]. In the
ISRA method, the system’s risk exposure is systematically
reviewed based on the three basic requirements: confidentiality,
integrity, and availability. They view a smart home automation
system consisting of six elements: connected sensors/devices,
a home gateway, a cloud server, a mobile device, mobile device
apps, and an API as an interface between mobile device apps
and smart home devices. In such architecture, a total of 32 risks
were identified and associated risk values calculated in a range
of 1-25. The strong merit with this paper is the systematic
evaluation of risks associated with home-based IoT. However,

as smart home automation systems often have heterogeneous
architectures, the proposed risk analysis would not be ap-
plicable to different technology designs. Furthermore, their
approach is more beneficial in the design and development
phases rather than attack identification and prevention during
the operational phase.

B. Securing IoT

The research into IoT security is in its early stage and many
work focus on identifying potential threats [7], [8], [9]. Some
solutions for specific problems are also proposed. In the work
by Reza et al. [10], an intrusion detection system is proposed
for 6LoWPAN (a compressed version of the IPv6) networks
of IoT. They primarily targeted network layer and routing
attacks such as sinkhole and selective-forwarding attack. For
evaluation, an implementation of the proposed IDS has been
implemented in the Contiki OS for IoT. However, their ap-
proach is not applicable to home-based IoT as 6LoWPAN
and Contiki OS are mainly used in IP-connected wireless
sensor networks and not common in smart home automation
systems. In another attempt, Prabhakaran et al. in [11] and [12]
propose an IDS framework for IoT empowered by 6LoWPAN.
They aimed Denial of Service (DoS) attacks such as jamming,
cloning, eavesdropping and routing attack. The developed IDS
framework implemented within the EU FP7 project ebbits,
which is not a common environment for smart home systems.
On the contrary, the scope of attacks in our work is not
limited to routing attacks; but instead, we focus on considering
other attacks as well; such as unauthorized access to home-
based smart devices, which are among OWASP top ten IoT
vulnerabilities.

In smart home context, Lee et al. [13] pointed out the
increasing popularity of smart home application of the emerg-
ing IoT and the need to provide adequate level of protection
for potential cyber-attacks against these resource-constrained
smart devices. They review the smart home technologies
(applications, devices, operating systems, and communication
protocols) and discuss the main security challenges and threats
against them. Das et al. [14] designed a security system
providing essential security for home automation system. They
use the information from motion detectors and video capturing
devices to manage operations on smart home appliances like
TV, lighting systems, and microwave. Their security system
has two main components: an iOS application and the server-
side script running from a cloud server. While this approach
seems to perform well in case enough contexts would be
available from capturing devices, it is obvious that it poses a
major limitation when no video capturing or motion detector
devices are being used within the network.

C. Network security using SDN

There is a growing body for prior work on using SDN
to manage network security for various scenarios including
campus, business or home. Several research works have in-
vestigated SDN ability to protect the network with different
intentions [15], [16]. SDN applications for network security
ideally must be able to detect and isolate network devices
that have been compromised. Feamster in [17] proposes to
outsource the management and operation of home and small
enterprise networks to a professional third party who has



security expertise and a general view of network activities.
In another attempt, authors in [18] use flow statistics in SDN
architectures to reveal anomalies by malicious events such as
DDoS, worm propagation and port scan. The merit of this
paper is using flow statistics to detect anomalies, which reduces
the overhead on central controller. However, this approach is
unable to detect other types of attacks such as insufficient
authentication/authorization.

III. BACKGROUND

Before explaining our proposed framework, we briefly
review the enabling technologies used by IoT-IDM.

A. IDS

Intrusion Detection is the process of monitoring the events
happening in a computer network system and inspecting them
for signs of possible threats [19]. An Intrusion Detection
Systems (IDS) is a device or software application aiming for
such detection. There are two main types of such systems:
network-based and host-based IDS. A network-based IDS
monitors network traffic for a particular network segment and
analyses different network layers to identify possible threats
and suspicious activity, e.g., unusual traffic flows like Denial
of Service (DoS) attack.

A host-based IDS monitors the activities and characteristics
of a single-host in a network for suspicious activities [19].
Host-based IDSs often deploy a detection unit known as agents
installed on the target hosts. Some host-based IDS products
may use dedicated agents on remote devices instead of placing
them on individual hosts. In this case, each remote agent is
positioned to monitor the network traffic going to and from a
particular host. Technically, these agents could be considered
network-based IDSs, as they are deployed inline to monitor
network traffic. However, they usually monitor activity for only
one specific host.

In typical IDSs for computer networks, sensor elements
monitor the network activities of target systems. The informa-
tion events acquired by these elements later are being analysed
for signs of possible incidents by other components. Sensors
elements are typically deployed as inline or passive. In inline
sensors, the network traffic pass through them and then being
forward to the target hosts, whereas passive sensors monitor a
copy of the actual network traffic. In legacy network, switches
equipped with spanning port enable their users to monitor the
network traffic in a passive manner.

IDSs typically use three main methodologies to investigate
incidents: (i) signature-based, (ii) anomaly-based, and (iii)
stateful protocol analysis [19]. When a threat is known, the
pattern corresponds to that threat or signature can be identified.
Signature-based detection (aka misuse detection) is a process
in which signatures are compared against observed network
traffic to identify possible malicious activity.

Anomaly-based detection can be used when there is no
previously known threat. In this process, the normal activity
is compared against the observed network activity in an
attempt to identify any deviation between them. Thus, a profile
representing the normal behaviour needs to be developed. The
normal behaviour profile is required to be updated as the
system and network change over time.

Stateful protocol analysis (aka deep packet inspection) is
relying on deep inspection of protocol activity and tracks the
state of application protocols used by network or hosts. In this
method in fact a normal activity of a protocol is compared with
observed events to identify deviations. For example, inspecting
the status code in an authentication process can reveal the
suspicious activity to access an IoT device using stateful
protocol analysis.

B. OpenFlow

Switches/routers in Computer networks have two main
functionalities. The first is control plane, which is responsible
to make decisions about where traffic is sent, and the second
is data plane which forwards traffic to selected destination.
In legacy networks, switches/routers run proprietary software
where these two functions are coupled. Software-Defined Net-
working (SDN) is a new promising architecture of computer
networking in which the control plane is decoupled from the
data plane [20]. SDN deploys control plane remotely from
a software-based entity called controller. The controller is
implemented in software in a logically centralized manner, and
the data plane is implemented in commodity hardware. The
controller communicates with the data plane using compliant
protocols. In this way, SDN enhances network visibility, scal-
ability and virtualization. The SDN architecture with its rich
functionalities in traffic monitoring and management can also
be utilized to perform traffic anomaly detection algorithms.

OpenFlow [20], which is an open standard managed by
Open Networking Foundation, is leading and dominant proto-
col suggested for communication interface between the con-
troller and underlying switches. It enables remote controllers
to modify the behaviour of networking devices through a well-
defined forwarding instruction set; in this way, the controller
determines the path of network packets through the network
of underlying switches. In OpenFlow protocol, each flow entry
consists of match fields, counters, and a set of instructions to
apply to matching packets. Matching starts at the first flow
table and may continue to additional flow tables. If a matching
entry is found, the instructions associated with the specific flow
entry are executed. If no match is found in a flow table, the
outcome depends on configuration of the table-miss flow entry.
For example, the packet may be forwarded to the controller
over the OpenFlow channel, dropped, or may continue to the
next flow table.

IV. IOT-IDM: HOST-BASED INTRUSION DETECTION AND
MITIGATION

The most relevant contribution of this paper is proposing
a framework to detect computer security attacks against smart
objects within home networks and to trigger the proper defence
actions to countermeasure the identified attacks. We consider
the following principles in the design of this framework. First
of all, the design should be able to provide security services
remotely and the end users of home-based IoT should not be
burdened with such heavy tasks. Typical home users of these
smart devices often lack enough expertise and vigilance to
secure a network of in-home smart devices, which often pose
heterogeneous architectures and varying degrees of security
properties. To address this challenge, we propose employing
SDN technology as it provides the possibility for remote



management. Thus, a third entity, which has security expertise,
could take responsibility for security management on behalf of
end users and provide Security as a Service (SaaS).

The second design objective is the efficiency of the frame-
work: the scheme should incur low communication and com-
putation overheads on the home router. For this requirement,
we consider host-based IDS to design our solution. This limits
the volume of the network traffic that needed to be analysed,
as host-based IDSs monitor the activities of a single host of
interest for suspicious and malicious activities. Furthermore,
the scheme should be able to filter out even the network traffic
of the specified host to reduce the overhead introduced to the
home router. For instance, if the detection method requires
investigating the traffic of a particular protocol (like HTTP) or
a specific source or destination IP address, appropriate filters
must be considered to reduce the volume of overall traffic.

Last but not the least, the framework should consider
scalability as new smart home IoT are emerging in our lives
at a fast pace from various manufacturers. Novel technologies
are incorporated within these emerging devices to provide
a wide variety of capabilities. This trend leads to a great
degrees of heterogeneity in their architectures and in turn could
create different types of security exposures. To cope with this
challenge, the framework needs to support the new coming
devices and technologies at a large scale.

To substantiate our claim, we propose a host-based Intru-
sion Detection and Mitigation framework for home-based IoT,
named IoT-IDM. It aims to provide security services using
SDN technology along with machine learning techniques. The
IoT-IDM framework, which we place it on the top of SDN
controller, consists of five key modules: Device Manager,
Sensor Element, Feature Extractor, Detection, and Mitigation.
Fig. 1 shows a high-level view of IoT-IDM including its key
modules and the communication between IoT-IDM with a
typical network of smart home. In this section, we describe
the IoT-IDM architecture and explain its main components in
details. We also mention the advantage of our framework over
to the already existing solutions.

Fig. 1. IoT-IDM Architecture and a typical smart home network.

A. Device Manager

The IoT-IDM architecture incorporates a database to sim-
plify the storage and management of a list of all known
in-home IoT devices along with the potential security risks
associated with them, the detection method of known attacks,
and if it is applicable, appropriate defense mechanisms. The

SaaS provider for home networks maintains this database and
updates the repository as new devices appear in the market.
This database, known as IoT Profile, can be located inside the
device manager module or on a remote site that is accessible
by this module. Remote database helps easy scalability of IoT-
IDM. The profile in general contains: (i) an ID associated with
the IoT device, (ii) attributes to create customized rules to
redirect the traffic toward IoT-IDM, (iii) traffic features, to
be used for classification, and (iv) a classification model, to
be used for detection process. A detailed explanation will be
provided later when this information is being used by IoT-
IDM.

At present, the presence of smart devices is not discovered
automatically and needs to be done manually. We plan to
employ discovery techniques such as SSDP protocol for the
registration purpose in the future work. In the first step,
the administrator of IoT-IDM is required to register in-home
IoT devices of interest, which are being used in the home.
The required information for registration is (i) device ID
and (ii) device location. The device ID is a unique identifier
representing the IoT device type and corresponds to the device
ID in the database of profiles. The device location represents
the network location where the IoT device is installed and can
be either the IP address of the device or the port number of
OpenFlow-enabled switch connected to the device.

B. Sensor Element

IoT-IDM framework adopts the inline sensor to monitor
network activities on a target IoT device. Once an IoT device
has been registered to monitor for suspicious activities, IoT-
IDM builds a virtual inline sensor as an application on top of
the SDN controller. It then creates and pushes out OpenFlow
rules in underlying switches in an attempt to redirect the traffic
between the IoT device and the rest of the network toward
the sensor element. In this way, only the network traffic of a
registered IoT device will pass through the sensor element,
thereby less traffic needs to be processed and the load on
SDN controller will be decreased. Sensor elements in IoT-
IDM also perform logging of network activities of associated
IoT devices. This data can be used in later steps to investigate
incidents.

The IoT-IDM framework is capable of detecting wide range
of attacks. However, since the sensor element in IoT-IDM
is positioned on top of SDN controller and due to the high
volume of network traffic in general, it is not technically
feasible to use IoT-IDM for intrusion detection and mitigation
process of all devices in a home network. Thus, this approach
is only applicable on selected smart home IoT devices in the
network that do not add a lot of overhead on SDN controller.

C. Feature Extractor

The network traffic of a registered IoT device captured
by the sensor element is used to extract features out of it.
This framework gives its user (SaaS provider) the flexibility
to decide which fields need to be extracted, as the entire traffic
is available. Therefore, the users of IoT-IDM have the ability
to select features depends on different problem instances.

Features basically represent the most critical aspects of the
network traffic, so their definitions require extensive domain



knowledge of the hosts and the possible attacks as well.
Features can be packet-based or flow-based. Packet-based
features are a set of IP packet attributes including source or
destination IP address, Layer 3 protocol type, e.g., TCP or
UDP, source or destination port and finally class of service,
e.g., HTTP, telnet, etc. A network flow is a unidirectional
sequence of packets that all shares the IP packet attributes [21].
Thus, it is required to aggregate packets in each flow into a
single flow object to extract flow-based statistics out of them.
Table I shows a few examples of flow-based features.

TABLE I. EXAMPLES OF FLOW-BASED FEATURES

feature name description

src IP Source IP Address
dst IP Destination IP Address
duration length of the flow
protocol type type of the protocol, e.g. TCP, UDP
service network service on the destination like HTTP
src bytes number of data bytes from source to destination
dst bytes number of data bytes from destination to source
mean fit mean amount of time between two packets sent in

forward direction
mean bit mean amount of time between two packets sent in

backward direction

D. Detection Unit

IoT-IDM framework examines the network traffic captured
by sensor elements or the statistics of network traffic extracted
from the previous step to identify suspicious activities. The
programmability aspect of SDN technology enables IoT-IDM
framework to utilize any machine learning algorithms to build
predictive models for detecting malicious traffic. The detection
process through this framework can deploy signature-based,
anomaly-based or stateful protocol analysis methodologies
either separately or integrated to provide efficient and accurate
detection. Due to the modular design of IoT-IDM, the SaaS
providers using this framework have the ability to design the
detection module, which fits best to the characteristics of attack
vectors.

Once a suspicious activity is detected, the detection module
in IoT-IDM framework identifies attacker and the victim of
the attack. This module then either raises an alert when a
suspicious activity is found but the attack mitigation is not
possible, or exposes all related information to the mitigation
module.

E. Mitigation

The mitigation module aims to take appropriate counter-
measures to prevent identified attacks from having harmful
effect. IoT-IDM uses OpenFlow rules in order to either block
or redirect the malicious traffic in accessing the target IoT
device. As a host within the network might be compromised
to launch the attack, IoT-IDM takes advantage of OpenFlow,
which gives the flexibility to quarantine the infected host or
just limit its access to the IoT device.

V. IMPLEMENTATION

We implemented a prototype of IoT-IDM using Flood-
light [22], a well-known open SDN controller for OpenFlow

networks. Floodlight can be freely used almost for any pur-
poses under Apache-license. The core of Floodlight controller
comprises Java-based modules implementing basic network
services to inquire and control an OpenFlow network. Apart
from core modules, Floodlight comes with a collection of
application modules for different purposes, such as a module
for installing a specific flow entry into a specific switch or
the load balancer module. The application modules have been
located on top of the core modules and Java APIs interface
them together. In addition, Floodlight modules may expose
REST APIs via specified REST port. In this way, REST
applications would be able to retrieve information and invoke
services using HTTP REST commands.

Corresponding to components of IoT-IDM framework, the
five key modules of the prototype are realised as Floodlight
application modules, and have been implemented in approxi-
mately 1,100 lines of Java. Fig. 2 illustrates these sub-modules
and their instantiation hierarchy. The base class and the starting
point of IoT-IDM module is IoT-IDM class. It implements
the necessary Floodlight listeners. Once initiated it creates
an instance of Device Manager to start the process. At first,
Device Manager creates a data structure to hold the profiles
of IoT devices. In current version, the administrator must
register the intended devices along with related information
including device ID and location in the module directly. An
interface application would place between the administrator
and this module in the future version to facilitate registration
and updating the related information.

IoT − IDM

Device Manager

Sensor Element Logger

Feature Extractor

Detection Unit

Mitigation Unit

Fig. 2. Components of IoT-IDM and their relationship.

Once an IoT device is registered in Device Manager and
its corresponding profile is created, it then creates instances
of three other classes: Sensor Element, Feature Extractor
and Detection Unit. Device Manager is also responsible for
cleaning up the objects of disconnected IoT devices.

Sensor Element is instantiated to monitor and log the IoT
device activities and basically responsible for two tasks. First,
it pushes out OpenFlow rules to underlying OpenFlow switches
to redirect all traffic going from and to the IoT device to itself.
It uses Floodlight Static Flow Pusher REST API to create
two rules signifying a bidirectional communication. These two
flows are then will be inserted in the flow table of destination
OpenFlow switch. Second, it logs the redirected traffic to be
used for further extensive investigations.

Feature Extractor is responsible for extracting the neces-
sary information from the logged flows in a structure that the
Detection Unit can interpret. It first queries the Device Man-
ager module for a set of features to be used for classification.
Then, it parses the logged flows to derive features. Finally, it
uses a simple data structure to store the feature statistics.



Detection Unit module first fetches the stored classification
model from Device Manager and then applies this model on
the statistic of features to predict whether the communication
is legitimate or not. In this way, training needs to be done in
advance and in off-line manner. It also creates an instance of
Mitigation Unit to avert the possible attacks using static rules
blocking intruders dynamically.

VI. CASE STUDY

In order to demonstrate the applicability of IoT-IDM, we
selected one of the popular smart home IoT devices, Philips
Hue. It is a smart lighting system that can be controlled
wirelessly. Compromised security of lighting systems can have
non-trivial consequences, for example, an intruder might gain
access of lighting systems in a home or a public venue and
remotely shut off lights resulting in accidents. We briefly
describe the architecture of Philips Hue and discuss possible
attack vectors against it. This provides the context for the
security mechanism that will be used by IoT-IDM.

Philips Hue is a smart lighting system that allows its user to
wirelessly control a series of light bulbs. The user can switch
On/Off the lights and also set their brightness and colour. The
Hue lighting system consists of four components: (i) a series
of Hue light bulbs, (ii) an Android/iOS App, as a way of
controlling the lights within the home network, (iii) a web-
based control panel, allowing a user of Hue to control the
lights from anywhere in the Internet, and (iv) an Ethernet
enabled bridge for communication between the App/web portal
and the light bulbs. A wired connection of the bridge to the
home router provides communication to the outside world and
wireless Zigbee protocol is a means of communication between
the bridge and the light bulbs. In the Hue’s architecture model,
the bridge acts as server that accepts commands from its users
via HTTP protocol.

A. Scope of Attack and Attack Model

In this study, we focus on communication between the
bridge and the App and do not analyse the Zigbee commu-
nication of the bridge and the lights. The Hue was initially
hacked in 2013 [23], which the attack against it lies on the
plaintext data communication between the App and the bridge.
This unencrypted communication provides an attack vector for
malicious attackers to infer operations that a legitimate user
performs on the bulb. Furthermore, the Hue maintains a list
of registered users and their associated secret keys known as
whitelist tokens for authentication purposes. The Hue sends
these whitelist tokens in plaintext in response to the access
request of any legitimate user, which is indeed very scary. A
malware on an infected machine on the smart home internal
network may be able to passively eavesdrop on the data/control
messages and obtain a list of registered tokens within the
bridge. This enables an attacker to masquerade as a legitimate
user by using its token and gain control of the lighting system.

We exploited above-mentioned vulnerabilities and devel-
oped a Python script to launch an attack against the Hue to
take control of light bulbs. The script takes two steps in the
attack scenario. First, it snoops passively the Hue network
traffic to learn tokens of registered clients and current status
of light bulbs. Next, it performs a range of commands on the

Hue light bulbs by impersonating as a legitimate user using
the learned token. These commands include switch on/off,
brightness as well as colour setting, and the bridge setting like
transition time. Fig. 3 describes the attack model algorithm,
which implemented by the use of Python script.

Require: IP . IP address of the Hue bridge
repeat

snooping . passive snooping the network
until T . a registered token is obtained
url = ”http : //” + IP + ”/api” + T
status← GET (url)

. HTTP method to get current status of the light bulbs
while True do

ON/OFF in [True , False]
BRI in [0 , 255]

. draw a random number to set the brightness
CLR in [153 , 500]

. draw a random number for colour
data = {”on” : ON/OFF, ”bri” : BRI, ”ct” : CLR}

. form a command
PUT (url, data) . issue the command
n in [100 , 1000]
wait(n) . wait n msec then send the next command

Fig. 3. Attack Model Logic

B. Data Gathering

We performed two experiments and collected packet traces
for the classification purpose. In the first experiment, we
installed a Hue system in our lab and used the Hue iOS App
version 1.8.2 on an iPhone to control the light bulbs. The app
and its host were registered within the Hue bridge. We then
issued a range of commands and collected the network traffic.
This experiment consists of 366 commands, which performed
over a period of approximately 5.5 hours. The commands
include switching on/off, brightness setting and changing the
light colour of bulbs.

We used the developed attack script mentioned earlier and
conducted the second experiment in an attempt to disclose
the registered clients within the bridge and to emulate unau-
thorized access to take control of the light bulbs. In this
experiment 297 illegitimate commands were issued from a
host within the Hue network over a period of approximately
2 hours. For these two experiments, we employed tcpdump
tool and captured traffic packet traces at the interface between
the App and the bridge of the Hue.

C. Feature Selection

We analysed the captured traffic and exercised several
statistics features within two available captured traffic traces
to find out the most critical ones that can be employed
for detection in IoT-IDM. We selected our set of features
heuristically based on the behaviour of the Hue as well as
the behaviour of the attack model. To this end, three features
were chosen: (i) the number of bytes in command packets,
(ii) the number of bytes in acknowledgement response packets,
and (iii) inter-packet time interval. Other features that we
considered initially but decided not to use were connection
duration and number of packet per connection. A more detailed



description of selected features and the reason behind their
selection will be provided below.

1) The Number of Data Bytes in Command and Response
Packets: As mentioned earlier in this section, users of Hue
issue commands to the bridge using the App in an attempt
to change the state of the light bulbs. Based on the Hue
design, the App communicates with the bridge through pro-
vided RESTful interface over HTTP protocol. Once the bridge
receives commands, it fulfils the request and in turn will issue
an acknowledgement response message to the App informing
the latest status of all light bulbs. The Hue uses JSON data
exchange format for this response message. We also observed
that every time a command is being sent to the bridge, a
TCP connection will be established and after receiving the
acknowledgement response the connection terminates.

There are many properties that can be controlled with Hue.
All of these properties are in the /state resource of a light. It
is also possible to control all lights at once by addressing the
/groups/0 resource. The bridge can accept ten commands per
second to the /lights resource and one command per second
to the /group resource as maximum. We also note that there
are different ways of colour setting. The colour can be set
either via an array of two values between 0 and 1 or a single
value between 153 and 500 representing a warm white to a
cold white. Lastly, the Hue App set the brightness or colour
separately, though it is possible to set both properties in one
command. These variation and combination of properties in a
command result in different size of packets.

Depending on how an entity communicates with the Hue
bridge, the size of command and response packets may vary.
We extracted the number of bytes in command packets and
its acknowledgement response messages of the two datasets.
Fig. 4 shows the byte count of command and response packets
for these two datasets. The intensity of colour in the plot shows
the frequency of that example in our observed dataset.

Byte Count of Command Packets
180 200 220 240 260 280 300 320 340 360

B
y
te

 C
o

u
n

t 
o

f 
A

c
k
n

o
w

le
d

g
e

m
e

n
t 

R
e

s
p

o
n

s
e

 P
a

c
k
e

ts

0

500

1000

1500

2000

2500

3000

3500

4000

4500

attack
normal

Fig. 4. Number of data bytes in commands and their responses in Hue.

2) Inter-packet time interval: Based on the Hue design the
brightness of a light can be set from a range between 0 to 255.
In the Hue App, a sliding bar is considered to allow users set
the desired light intensity. The App in turn sends the current
state of brightness indicator as it senses any change. Thus,

several commands are being forwarded to the bridge in a row
for any change in brightness. The same principle also applies
to the colour setting; users of the Hue can choose the colour
from a xy coordinates and the App will send colour change
commands, as any change is perceived, thereby several colour
setting’s commands are sent in a row. Fig. 5 shows issued
commands in a typical brightness setting and colour changing.

62.0 62.5 63.0 63.5 64.0 64.5
time(second)

0

50

100

150

200

250

300

si
ze

 o
f 
p
a
y
lo
a
d

(a) Brightness Setting

155.0 155.5 156.0 156.5 157.0 157.5
time(second)

0

50

100

150

200

250

300

si
ze

 o
f 
p
a
y
lo
a
d

(b) Colour Setting

Fig. 5. Consecutive requests to set brightness and colour from the iOS App.

We measured the inter-packet time interval for the normal
traffic dataset. The average value of these two observations
for normal and attack dataset is given in Table II. From the
difference in the time interval, we inferred that the inter-packet
time interval could be used as a classification feature in the
detection process.

TABLE II. INTER-PACKET TIME INTERVAL

Legitimate user Traffic Attack Traffic

Brightness setting 83ms 518ms
Colour changes 93ms 521ms

D. Classification

Aiming to detect possible intruders to protect a Hue system
from unauthorized access, we sought for a predictive model,
i.e., a classifier, capable of distinguishing between legitimate
access and attack or intrusion. This requires a set of labelled
data as legitimate and attack for learning task. We used the
two captured traffic traces, as mentioned in Section VI-B, and
generated the training dataset. Each instance in the training set
contains one class label (legitimate or attack) and three features
or attributes including (i) the size of request command from the
App toward the bridge, (ii) the time passed since the previous
command received, and (iii) the size of response packet to the
command.

We first employed logistic regression technique with the
three features of interest for the Hue. We used the training
dataset and implemented gradient descent algorithm on them
to find out the optimal parameters of a linear regression model.
Alternatively, we used Support Vector Machines (SVMs) [24],
which are a robust technique for non-linear data classification.
SVMs use maximum margin kernel to nonlinearly map sam-
ples into a higher dimensional space. We considered Radial
Bias Function (RBF) kernel (a.k.a Gaussian) that performs well
in practice. In using RBF kernel, there are two parameters (C
and γ) that must be determined before the learning process. We
used a v-fold cross validation to identify the best parameters
and incorporated the LIBSVM library to obtain the optimized
classification model.



The accuracy of the obtained linear model using logistic
regression on the whole training set was 96.2%, whereas
through SVMs the accuracy of the nonlinear model was 100%.
We note that the accuracy of classifier depends on the exact
learning algorithm so choosing a suitable algorithm is crucial
for well performance of IoT-IDM. The obtained model must
be stored in the profile of the Hue in the database to be used
by detection unit.

VII. EXPERIMENTS

In this section, we present the empirical experiment to
demonstrate the effectiveness and applicability of IoT-IDM
framework. To this end, an experimental setup was developed
and Philips Hue lighting system is employed as a smart-home
IoT device to demonstrate the applicability of our framework.

A. Experimental Setup

In order to conduct our experiment, we required an
OpenFlow-compliant switch. For this purpose, we used Open
vSwtich (OvS) [25] that is a software switch that supports
OpenFlow. The software switch was hosted on a normal
Ethernet switch to build an OpenFlow-hybrid switch. We used
TP-Link TL-WR1043ND as the Ethernet host switch. As the
default OS on this switch does not allow to install OvS on
it, we installed OpenWrt [26] v12.09 (Attitude Adjustment
version) integrated with OvS v2.3.1 on the host switch. Open-
Wrt is an embedded OS based on the Linux kernel. The
defined ports of the host switch, which correspond to hardware
interfaces, are mapped to OvS ports to represent OpenFlow
physical ports. WiFi connection is also configured within the
switch to provide wireless access across the home network
using OvS.

We used a realistic setting and assembled a small home
wireless router using the OpenFlow-enabled switch. The
Floodlight controller was hosted on a 2.5 GHz Intel Core i7
with 16 GB 1600 MHz DDR3 Ram server. One of the physical
interfaces on the switch is considered for OpenFlow channel
to connect the OpenFlow switch to the controller. Through
this interface, IoT-IDM receives events from the switch, and
sends packets out the switch. The Hue bridge was connected
to one of the wired Ethernet ports of the switch. We also used
an Android phone and installed the Hue App on it to control
the light bulbs. Therefore, the Hue App communicates with
the Hue bridge through the OvS router via WiFi and wired
connection. For emulating attack against the Hue, we used a
desktop computer connected in the same network to run the
attack script. The experimental setup is shown in Fig. 6

Fig. 6. Experimental Setup.

B. IoT-IDM Setup

After thorough analysis of the Hue given in Section VI, a
profile for the Hue created and stored in IoT-IDM database as
described in Section IV-A. In the first step, we registered the
Hue bridge within device manager module in IoT-IDM. The
registration includes the Hue ID and its location specified by IP
address of the Hue bridge. Thus, IoT-IDM will be aware that
a Hue lighting system is situated in the network with known
IP address.

In the next step, IoT-IDM creates a virtual sensor element
and then uses the location information (IP address) of the
Hue bridge to construct two static OpenFlow rules to redirect
the network traffic going to and from the bridge toward the
sensor element. For constructing these rules, IoT-IDM uses the
Hue profile to redirect the traffic toward the sensor element.
In order to avoid flooding the sensor element, the rules may
include specific conditions to filter out the redirected traffic.
As described in Section VI-C, we are interested in HTTP
packets for the Hue. Thus, IoT-IDM added tcp_dst field
with value of 80 to filter out only HTTP packets. The generated
OpenFlow rules are then pushed out in the OvS using HTTP
POST command. The generated rules by IoT-IDM for the Hue
are given below.

{"switch":"*:*", "name":"hue-flow1",
"priority":"32767", "active":"true",
"ipv4_dst":"192.168.2.226",
"tcp_dst":"80", "eth_type":"0x0800",
"ip_proto":"0x06",
"actions":"output=controller"}

{"switch":"*:*", "name":"hue-flow2",
"priority":"32767", "active":"true",
"ipv4_src":"192.168.2.226",
"tcp_src":"80", "eth_type":"0x0800",
"ip_proto":"0x06",
"actions":"output=controller"}

Feature extractor module in IoT-IDM then queries the types
of features of interest for the Hue from its stored profile. It
then starts extracting of the features from the logged traffic
in the sensor element. For each HTTP command receiving
to the bridge three features were extracted as described in
Section VI-D. The detection module then employs the stored
logistic regression prediction model for classification purpose.
Finally, once a suspicious activity is identified, the detection
module in turn informs the mitigation unit to generate and push
out rules to block infected machine in accessing the victim
device.

C. Results

It is important to test a system under examination with a
different data set as it trained. Thus in our testing scenario,
we used an Android App for the normal access to the Hue.
We also modified the attack script in a way that it mimics the
pattern of commands generated by a legitimate Hue App as
much as possible, e.g., brightness and colour setting commands
generated separately in different commands and for each
property, 5 to 7 commands are generated in a row with 100ms
interval.



In our test experiment, we performed commands ranging
switch On/Off, brightness and colour setting using the Hue
App. In the meantime, we launched the modified test attack
from a machine in the same network of the Hue. IoT-IDM
was monitoring the Hue activities during this experiment and
collected all the traffic of the system under examination. The
captured traffic contained 1762 commands over a period of
approximately 8 hours. The detection unit in IoT-IDM labelled
each access on the Hue based on the developed classification
model described in Section VI-D. For accuracy evaluation, we
amended IoT-IDM framework such that it also logged the four
tuples including source and destination IP addresses and ports
along with three features mentioned in Section VI-C. Since we
were aware of legitimate App and emulated attack source, we
used logged information and labelled commands for evaluation
purpose.

The efficiency of IoT-IDM in detecting unauthorized at-
tacks against the Hue was evaluated through precision and
recall metrics. The precision metric indicates that from all
accesses to the Hue where IoT-IDM considered them as attack,
what fraction actually were illegitimate access and is given by:

precision =
TP

TP + FP
(1)

Where TP (True Positive) is an attack access to the Hue
classified as attack, and FP (False Positive) is a legitimate
access to the Hue classified as an attack access. Similarly, the
recall metric reveals that from all attack accesses to the Hue,
what fraction IoT-IDM correctly detects as illegitimate access.
The recall metric can be seen as follows.

recall =
TP

TP + FN
(2)

Where FN (False Negative) is a legitimate access to the Hue
classified as an attack access.

The results obtained from the test experiment showed that
the linear logistic regression classification model in IoT-IDM
predicted 1201 commands as illegitimate access where 69 of
them are False Positive. It also predicted 561 commands as
legitimate access which 199 of them were False Negative.
Considering these result, it turned out that IoT-IDM detected
unauthorized access to the Hue with precision rate of 94.25%
and recall rate of 85.05%. Similarly, in case of using nonlinear
classification model, the prediction precision was 98.53%
and prediction recall was 95.94%. Although the detection
accuracy depends on the employed detection algorithm, it also
demonstrates the applicability of IoT-IDM. Once an attack is
detected, an infection profile will be created in IoT-IDM and
appropriate OpenFlow rule will be created to quarantine the
infected host to access to Hue.

VIII. CONCLUSION

The Internet of Things (IoT) paradigm provides an oppor-
tunity to access and control smart devices at any place and at
any time through using Internet Protocol (IP). Providing such
opportunity, smart home application is making our lives easier
by employing IoT technology in nearly anything: wired and
wireless security detectors, cameras, thermostats, smart plugs,
lights, entertainment systems, locks, and appliances. However,
these smart devices are susceptible to attacks due to the lack of

sufficient security consideration or poorly management. Thus,
appropriate actions must be taken to mitigate security concerns
in smart home technologies.

This study offers network-based intrusion detection and
mitigation framework, called IoT-IDM, to identify and address
potential attacks in smart home environments. To achieve this
aim, we employed the SDN architecture in IoT-IDM to take
advantage of its network visibility and programmability to
provide a more secure and trustworthy environment for smart
homes. IoT-IDM uses machine learning techniques to detect
compromised hosts, whereby attacks are launched. After iden-
tifying the source of attacks, IoT-IDM generates appropriate
policies and pushes to underlying routers/switches to avert
attacks against victim IoT devices. A prototype of IoT-IDM
is developed as a module of Floodlight SDN controller and
its applicability demonstrated through a real smart lighting
system.

REFERENCES

[1] “The Internet of Things How the Next Evolution of the Internet Is
Changing Everything,” White Paper, Cisco, April 2011.

[2] (2015) A Technology report. BBC. [Online]. Available:
http://www.bbc.com/news/technology-30121159

[3] “Internet of things research study,” White Paper, HP, July 2015.
[4] T. Denning, T. Kohno, and H. M. Levy, “Computer Security and the

Modern Home,” Communications of the ACM, vol. 56, no. 1, pp. 94–
103, January 2013.

[5] A. Jacobsson, M. Boldt, and B. Carlsson, “A risk analysis of a
smart home automation system,” Future Generation Computer Systems,
vol. 56, pp. 719 – 733, 2016.

[6] T. R. Peltier, Information Security Risk Analysis. Auerbach, 2010.
[7] R. Roman, J. Zhou, and J. Lopez, “On the Features and Challenges

of Security and Privacy in Distributed Internet of Things,” Computer
Networks, vol. 57, no. 10, pp. 2266–2279, Jul. 2013.

[8] S. Sicari, A. Rizzardi, L. Grieco, and A. Coen-Porisini, “Security,
privacy and trust in Internet of Things: The road ahead,” Computer
Networks, vol. 76, pp. 146 – 164, 2015.

[9] S. L. Keoh, S. Kumar, and H. Tschofenig, “Securing the Internet of
Things: A Standardization Perspective,” Internet of Things Journal,
IEEE, vol. 1, no. 3, pp. 265–275, June 2014.

[10] S. Raza, L. Wallgren, and T. Voigt, “SVELTE: Real-time Intrusion
Detection in the Internet of Things,” Ad Hoc Networks, vol. 11, no. 8,
pp. 2661–2674, Nov. 2013.

[11] P. Kasinathan, G. Costamagna, H. Khaleel, C. Pastrone, and M. A.
Spirito, “DEMO: An IDS Framework for Internet of Things Empowered
by 6LoWPAN,” in ACM SIGSAC Conference on Computer and Com-
munications Security, CCS’13, November 4-8 2013, pp. 1337–1340.

[12] P. Kasinathan, C. Pastrone, M. A. Spirito, and M. Vinkovits, “Denial-
of-Service detection in 6LoWPAN based Internet of Things,” in 9th
IEEE International Conference on Wireless and Mobile Computing,
Networking and Communications, WiMob ’13, October 7-9 2013, pp.
600–607.

[13] C. Lee, L. Zappaterra, K. Choi, and H.-A. Choi, “Securing Smart
Home: Technologies, Security Challenges, and Security Requirements,”
in IEEE Conference on Communications and Network Security (CNS)
Workshops, Oct 2014, pp. 67–72.

[14] S. R. Das, S. Chita, N. Peterson, B. A. Shirazi, and M. Bhadkamkar,
“Home Automation and Security for Mobile Devices,” in IEEE In-
ternational Conference on Pervasive Computing and Communications
Workshops (PERCOM Workshops), March 2011, pp. 141–146.

[15] H. Kim, A. Voellmy, S. Burnett, N. Feamster, and R. Clark, “Lithium:
Event-Driven Network Control,” Georgia Institute of Technology, Tech.
Rep., 2012.

[16] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack
detection using NOX/OpenFlow,” in Local Computer Networks (LCN),
2010 IEEE 35th Conference on, Oct 2010, pp. 408–415.



[17] N. Feamster, “Outsourcing Home Network Security,” in Proceedings
of the 2010 ACM SIGCOMM Workshop on Home Networks, ser.
HomeNets ’10. New York, NY, USA: ACM, 2010, pp. 37–42.

[18] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and
V. Maglaris, “Combining OpenFlow and sFlow for an effective and
scalable anomaly detection and mitigation mechanism on SDN envi-
ronments,” Computer Networks, vol. 62, no. 0, pp. 122 – 136, 2014.

[19] K. A. Scarfone and P. M. Mell, “Guide to Intrusion Detection and
Prevention Systems (IDPS),” National Institute of Standards and Tech-
nology of USA, Gaithersburg, MD, United States, Tech. Rep. SP 800-
94, February 2007.

[20] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM Computer Communication Review
(CCR), vol. 38, no. 2, pp. 69–74, Mar. 2008.

[21] “Introduction to Cisco IOS NetFlow - A Technical Overview,” White

Paper, Cisco, May 2012.

[22] (2015) Floodlight Homepage. [Online]. Available:
http://www.projectfloodlight.org/floodlight/

[23] (2013) Hacking Lightbulbs. [Online]. Available:
http://www.dhanjani.com/blog/2013/08/hacking-lightbulbs.html

[24] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A Training Algorithm
for Optimal Margin Classifiers,” in Proceedings of the Fifth Annual
Workshop on Computational Learning Theory, ser. COLT ’92. New
York, NY, USA: ACM, 1992, pp. 144–152.

[25] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker,
“Extending Networking into the Virtualization Layer,” in In: 8th ACM
Workshop on Hot Topics in Networks (HotNets-VIII), New York City,
October 2009.

[26] (2015) OpenWrt Website. [Online]. Available: https://openwrt.org/


