
IOT-NETSEC: Policy-based IoT Network Security
using OpenFlow

Mehdi Nobakht∗† Craig Russell† Wen Hu∗ Aruna Seneviratne‡
∗School of Computer Science and Engineering, UNSW Sydney, Australia

∗School of Electrical Engineering and Telecommunications, UNSW Sydney, Australia
†Data61 | CSIRO, Sydney, Australia

Abstract—The increasingly widespread adoption of the Inter-
net of Things (IoT) has resulted in concerns about IoT security.
Recently, there have been proposals to leverage software-defined
networking (SDN) to augment IoT device security with network-
level measurements. We argue that existing general-purpose se-
curity solutions using SDN are impractical for supporting today’s
home and corporate networks due to the high volume and rates of
network traffic, differences in characteristics of IoT systems and
computer networks, and limited resources in underlying network
switches. To this end we propose IOT-NETSEC, a framework
that enables policy-based and fine-grained traffic monitoring of
the network segments that include only IoT devices. We describe
a prototype implementation and its integration with an SDN
controller. The prototype implementation and simulations with
three network service attacks (port scanning, SYN DoS Flooding
and smurf DDoS) demonstrate IOT-NETSEC feasibility in a
network of real IoT devices.

I. INTRODUCTION

Innovation, efficiency and cost-saving are main motivations
in the development of emerging IoT solutions, and surprisingly
security is most often last. This is evident by numerous security
breaches that have already been reported for IoT solutions [1],
[2], [3]. Attack vectors and surfaces in IoT environments are
often different compared to traditional computer networks.
These differences lie in specific characteristics of IoT systems
such as resource-constrained and limited-function devices that
most often communicate wirelessly with IoT gateways between
such devices and the Internet. Unfortunately, running an extra
security software on IoT devices or even patching vulnerabil-
ities by updating their firmwares are not viable solutions [4].

Many security issues stem from ignoring best-security
practices which makes IoT systems vulnerable to attacks.
Among others, weak passwords, lack of encryption and back-
door accounts are common IoT device attack vectors [5]. These
vectors can be exploited to perform various kinds of attacks
ranging from device level attacks to network service attacks.
Unauthorised remote access to IoT devices in an attempt to
seek profit by gaining control of it is a type of device level
attacks that has been shown in many reports [6]. Examples of
network service attacks include network reconnaissance and
heavy hitters such as Distribute Denial of Service (DDoS). A
recent example of DDoS attack that occurred in 2016 caused
large-scale attacks that used telnet and a weak password vector
to compromise IoT devices to be used as a large botnet [1].

There have been many works suggesting to implement
security mechanism into entire IoT echosystem of devices,
networks, and applications during design and development

phases. However, this solution cannot address vulnerabilities
in legacy and otherwise unsupported IoT systems which most
often unpatchable [4]. Moreover, new attack surfaces make
even current robust and secure IoT systems vulnerable in
future due to their inability to satisfy security requirement
given to their limited computation and power resources. To
address these limitations, there is a growing body of research
work proposing to implement additional security measures at
network-level [7], [8].

Software-defined Networking (SDN), thanks to its pro-
grammability and its ability to give visibility into the network,
makes it possible to improve network security properties. In
the past few years, there have been research work proposing
to leverage SDN to orchestrate security measures at a larger
scale based on the central view of the network [9], [10]. These
prior works either assumed that the network is only consist of
IoT devices or do not scale well. However, today’s home and
enterprise networks most often include a mixture of networked
applications, e.g., web browsers and data-hungry apps, and
devices such as PCs, tablets, mobile phones and IoT devices.

We argue that it is impractical to incorporate a general-
purpose security solution for today’s networks using SDN.
First, high data volume and rate of today’s home and enter-
prise network traffic imposes a significant burden on security
applications on top of SDN controllers [8]. Furthermore,
the traffic characteristics of IoT systems such as intermittent
connectivity, data usage pattern, and most often low data rates
make it difficult to incorporate a general-purpose security
solution applicable to both IoT systems and conventional
computer network systems. Moreover, required resources for
traffic measurement tasks in underlying network switches, e.g.,
TCAM (Ternary Content-Addressable Memory) counters, are
fundamentally limited for power and cost reasons [11].

In the light of these challenges, we suggest to perform
network-level security monitoring only for a particular network
segment which includes IoT devices; let well-matured security
measures for networked computers to be responsible for secu-
rity threats through conventional computer network systems.
This significantly reduces overhead on security applications
over SDN controllers, and additionally valuable and limited
resources in hardware switches, e.g. TCAM counters, can thus
be used more effectively. Beyond that, due to the nature of
myriad IoT devices of all kinds and heterogenous architecture
of IoT systems, we propose to use a vigilance policy-based
security approach that should be created and updated for each
class of device. Away form network characteristics of an IoT
device, usage pattern and context can also be used to learn



temporal and spatial usage data that can be used in constructing
a more flexible and dynamic security policy that adapts to a
user’s situation.

In this paper, we discuss the design of a security system
for IoT networks, called IOT-NETSEC. Users of IOT-NETSEC
can register IoT devices of interest into the system at an
SDN controller and attach pertinent security policies to the
registered things. IOT-NETSEC uses security policies to allow
a few remote servers on the Internet which maintained by
device manufacturers and legitimate device users to commu-
nicate with devices. Additionally, it monitors merely network
traffic of IoT devices to detect data traffic rate that exceeds
the expected threshold specified in their security policies.
IOT-NETSEC enforces pre-determined security requirements
specified in policies and raises an alarm once traffic rate
changes significantly.

IOT-NETSEC leverages one important observation that
supports its users to construct security policies. That is IoT
devices often perform a limited functions because of resource
constraints of embedded devices, which makes their network
traffic rate pattern predictable. To represent traffic rate patten,
we use traffic volume as a feature to identify flows exceeding
a given threshold. IOT-NETSEC first installs associated flow
entries into SDN switches and then continuously measures
statistics associated with flow entries enabled by OpenFlow
capability to count packet and bytes. Before that, the threshold
of permitted traffic volume must be determined. This can be
done either using device makers’ specification or training a
model on the data set of normal activities of IoT devices.

II. IOT-NETSEC

A. Overview

The IOT-NETSEC framework is a software tool running
on an SDN controller. It is designed to monitor the traffic
of intended IoT devices across the network to ensure that i)
only approved communications are allowed and everything
else is denied, and ii) network attacks (e.g. heavy hitter)
are not occurring against IoT devices, and iii) compromised
IoT devices are not carrying out such attack against victim
servers on the Internet. Users of IOT-NETSEC register IoT
devices of interest to the system and attach related device
policies to them. Figure 1 shows an overview of the IOT-
NETSEC workflow and illustrate both user and SDN network
interface to IOT-NETSEC. A device policy specifies threshold
values of incoming and outgoing flow rates for the device, and
additionally may specify a flow filter to prevent inappropriate
communications with the device. IOT-NETSEC blocks access
attempts to an IoT device that violates its policy and periodi-
cally extracts ongoing flow statistics associated with the device
and raises an alarm once the traffic volume exceeds a pre-
determined threshold. An IOT-NETSEC user can be a Security
as a Service (SaaS) provider [12], or a network operator.

The users of IOT-NETSEC are required to have a good
understanding of expected device behaviour to turn it into the
device policy. Network security rules in the device policy de-
fined by packet header fields which specified using five tuples
including source IP address (SrcIP), destination IP address
(DstIP), protocol, source port (SrcPort) and destination port
(DstPort). For example, a security rule in the device policy

IOT-NETSEC
Policy Repository Thing Registry

Statistics Analyzer

SDN

(1) register device(2) attach policy

(3
)

in
st

al
l

ru
le

(4
)

fe
tc

h
st

at
is

tic
s

(5
)

al
lo

w
/

bl
oc

k

Fig. 1: IOT-NETSEC Workflow.

of an IP-based baby monitor allows the device communicates
only with its legitimate server with known IP address and port
and denies any other requests to establish a TCP connections
to/from the baby monitor.

B. Feature Identification

As mentioned above in earlier section, a good under-
standing of expected device behaviour helps to identify right
features. Basically, network features should represent con-
nections’ critical aspects. In case of TCP connections, time-
based traffic features of TCP connections examine connection
behaviour within a time frame and calculate statistics related
to protocol behaviour or service.

IOT-NETSEC aims to detect network attacks and particu-
larly three common types of network attacks including port
scanning, DoS, and DDoS. Basically, features should be cho-
sen so that are relevant to each attack. For example, consider
TCP SYN flood attack where an attacker sends repeated SYN
packets to the victim device. This will increase the number
of packets received at the victim device. Thus, if a TCP SYN
flood attack is occurring against a target device, the attack then
would be identified by the traffic rate destined to the device;
packets with the device IP address as destination address
(DstIP) would exceeds the given threshold value specified in
the device policy.

C. Architecture

IOT-NETSEC’s framework is composed of the following
components:

1) Device Policy Repository: This component contains
policy documents which are associated for all known IoT
devices. A device policy is a JSON document including
security policies for the class of devices. It includes device
name and type, and a set of network security flow rules to
allow an instance of the device to communicate only with
its pre-determined controllers and servers, and also to specify
threshold values for the device network features. The network



security flow rules are created by users of IOT-NETSEC using
the device usage description and by training its normal network
behaviour.

2) IoT Device Registry: Using this component, a user
of IOT-NETSEC registers an IoT device into the system and
attaches a related device policy to it. During registration, the
user specifies either the IP address of the device or the port
number of the SDN switch connected to the device. Attaching
a device policy to a device provides necessary information
about the device to monitor its network traffic.

3) Security Flow-rule Installer: This component parses
the security rule set in the attached device policy, creates
related security flow-rules for traffic monitoring purpose, and
installs flow entries in SDN switches. There are two types
of monitoring flow entries which IOT-NETSEC may create:
routing and non-routing flow entries. Routing flow entries are
related to TCP/IP protocol stack Level 3 routing, e.g., IPv4 and
IPv6. While non-routing flow entries are used to monitor non-
routing field like TCP SYN, TCP SYN-ACK and TCP FIN.
IOT-NETSEC uses routing flow entires to define flow filters
to prevent illegitimate access to an IoT device. For example
individual flows from an IoT remote controller with specific
SrcIP to destination IoT end-point device. Non-routing field
instead are used for heavy hitter detection like port scan and
TCP SYN flood attacks1.

Before installing flow entries, IOT-NETSEC first ensures
whether there are already relevant flow entry rules at switches
in the network. In case, there is no related flow entry rule with
the same granularity required by the security rule set in the
policy, new flow entry rules will be created by this component
to provide fine-grained measurements of time-varying traffic
at all switches in the network.

4) Statistics Collector: The component is responsible for
collecting packet and byte counts associated with monitoring
flow entries in SDN switches in the IoT network. These
measurements of packet and byte counts provide fine-grained
visibility into network traffic and are considered as network
statistical features to be used by the analysis algorithms.

5) Statistics Analyzer: This component takes counter
statistics about flows and matches them against the pre-
determined thresholds values defined in the security rule set
within the device policy. IOT-NETSEC analyses these counter
statistics at multiple spatial and temporal scale to achieve
a better accuracy. To this end, a small memory has been
considered in order to update counter statistics over damped
window. In a damped window model, a higher weight is given
to recent data than those in the past; the weight of older counter
values decrease over time [13].

D. implementation

We have implemented a complete prototype of IOT-
NETSEC as a software tool to perform measurement tasks.
In our prototype, we use Faucet SDN [14][15] which is a
compact open source OpenFlow controller, mainly designed
for enterprise and campus networks. Faucet has two main
OpenFlow controller components; Faucet itself, and Gauge.

1From OpenFlow version 1.5, TCP flags matching has been added which
allows to match all TCP flags such as SYN, ACK and FIN.

Faucet controls all forwarding and switch state, and exposes
its internal state. Gauge also has an OpenFlow connection to
the switch and monitors ports and flow states. Gauge, however,
does not ever modify the switch’s state, so that switch moni-
toring functions can be upgraded, restarted, without impacting
forwarding.

In order to store timely measurement of time-varying
traffic in the IoT network under test, we use Prometheus [16]
which is an open-source time-series database. Prometheus
fundamentally is a full monitoring system that includes built-in
and active scraping, storing, querying, graphing, and alerting
based on time series data. Figure 2 shows our implementation
interfaces both with Faucet SDN controller and Prometheus
time-series data base. The OpenFlow switches and a set of
IoT devices also depicted in the figure.

Device Policy Repository

IoT Device Registry Statistics Analyzer

Security Flow-rule Installer Statistics Collector

thing Faucet

thing Gauge

IOT-NETSEC

OpenFlow
Network Switch

AT x930

Faucet SDN

Prometheus
Time-series DB

Things

Fig. 2: An illustration of IOT-NETSEC’s prototype.

III. EVALUATION

We use our implemented prototype of IOT-NETSEC to
evaluate our approach.

A. Experimental Setup

In order to evaluate the IOT-NETSEC prototype, we used
a modern hardware OpenFlow-enabled switch (Allied Telesis
switch x930 series [17]). In our experiments, our IOT-NETSEC
implementation runs on a dual core 2.4 Ghz Intel Xeon
processor connected to the switch through a 1Gbps shared link
with ping delay of 0.5 ms.

1) Parameter Settings: We use one second scraping interval
for Prometheus; every one second the network measurement
tasks are performed and new samples are appended to the
corresponding time-series. Additionally, we set the window
size that updates counter statistics to three. In this way the
most recent counter measurement receive the higher weight
than older measurement.

2) IoT Devices: We use a network of smart-home IoT
devices to evaluate IOT-NETSEC prototype. We have selected
three devices among the common smart-home IoT niches.
These devices are i) Philips Hue connected bulb and ii) Belkin
WeMo switch and Motion sensor. In order to provide some
background, we briefly describe them.



The Philips Hue connected bulb is a smart lighting system
that can be controlled wirelessly. It is a system of 4 compo-
nents including i) a series of Hue light bulbs, ii) an App as a
way of controlling the lights within the home network, iii) a
web-based control panel providing controlling the lights from
anywhere in the Internet, and iv) an Ethernet enabled bridge
for communication between the App or web portal and the
light bulbs. The wired connection of the bridge to the home
router provide the communication to the outside world and
wireless Zigbee protocol is a means of communication between
the bridge and the light bulbs. In its architecture model, the
bridge acts as server which accepts commands from its users
via HTTP protocol.

The Belking WeMo Switch and Motion Sensor is a kit
of two smart devices that connect to the Internet via WiFi
provided interface. WeMo switch is a power socket allows its
users to control electrical home appliances power wirelessly
and WeMo Motion Sensor enables turning devices on or off
as soon as movement is detected. Users can control connected
appliances using provided App and can see any activity or the
status of appliances. Furthermore, users can configure the kit
by inserting rules via the App.

Smart-home IoT devices in our network are connected to
the switch ports using a direct wired connection (Philips Hue)
and WiFi radio connections (Belking WeMo switch). These
devices are connected to the Internet via WAN port of the
switch.

3) Attack Simulations: In order to generate attack traffic,
we used a tool called Scapy [18] to simulate real attacks
against our smart home IoT devices installed in our lab.
Scapy is a powerful Python library for the purpose of packet
manipulation. It is used in this study to initiate flooding and
probation attacks. Attacks are launched from a machine in the
our home network and connected to one of Open vSwtich
(OVS) [19] software switch.

In order to launch TCP SYN Flood attacks, the attack
script generates SYN packets with our target IoT devices as
destination IP addresses and ports, the attacker machine as
source IP address, and a random set of source IP ports. For the
spoof-based TCP SYN Flood attacks, the script first identify
the active IoT devices within the network and then use their IP
addresses to spoof source IP address of attack packets. Thus,
the victim IoT device will respond connection requests to other
devices in the network rather than the attacker machine.

For Portscan traffic, we constructed packets with source
IP address of the attacker machine and random source ports,
destination IP address of target IoT device and a set of
destination ports. The attacker script sends a TCP SYN packet
on each of destination ports and depends on SYN-ACK or
RST response infers open ports of target IoT device. Finally,
for DDoS attack we launched smurf scenario. For this, the
attacker script broadcasts ICMP packets in the network with
spoofed source address as IP address of a victim IoT device.

B. Dataset

In order to evaluate the capability of IOT-NETSEC in de-
tecting network attacks, several experiments (See Table I) were
conducted in a realistic IoT network in our lab. The network

consists of three types IoT devices as listed in Section III-A
and three PCs. One PC in the network is used to launch the
attacks and two others were used for IP spoofing traffic in
host pool. We interacted with IoT devices in our experimental
network and issued various range of commands to generate
legitimate traffic. Next, we launched various network attacks
from a machine in our network during training phase. Legiti-
mate traffic and various attacks traffic are mixed in the training
dataset.

The legitimate traffic consists of different protocols includ-
ing TCP, UDP and ICMP. For attack traffic, Scapy tool was
used to launch network attacks. For training purpose, both
legitimate and attack traffic captured and labeled accordingly.
We generated 104,253 attack packets and collected 231,133 le-
gitimate packets during the training phase and used tcpdump
tool to capture traffic packet traces at the interface between
the host and the SDN switch. Table I shows the breakdown of
the dataset used in our experiment during training and testing
phases.

C. Classification

Aiming to detect network attacks against IoT devices in
our network, we sought for a predictive model, i.e., a classifier,
capable of distinguishing between legitimate access and attack
or intrusion. We used the two captured traffic traces (legitimate
and attack traffic). Each instance in the training set contains
one class label (legitimate or attack) and features. The number
of features depends on the window size of damped window
mode. For example, in TCP SYN Flood attack, there are four
features: the scraping interval that used to fetch count data
from time series database and three packet counts associated
with IP address of intended device since we set the window
size to three (See Section III-A1). The packet counts data
includes the number of packets toward the device in the last
statistic collection, the second last statistic collection, and the
third last statistic collection.

The output of a binary classification is a value of 0 or 1,
where the classifier computes the probability that a sample
belongs to what class which is a value between 0 and 1.
We used Support Vector Machines (SVMs) [20], which are a
robust technique for non-linear data classification. SVMs use
maximum margin kernel to nonlinearly map samples into a
higher dimensional space. We considered Radial Bias Function
(RBF) kernel (a.k.a Gaussian) that performs well in practice.
In using RBF kernel, there are two parameters (C and γ) that
must be determined before the learning process. We used a
10-fold cross validation to identify the best parameters and
incorporated the LIBSVM library to obtain the optimised
classification model.

D. Evaluation Metrics

A classifier performance typically depends on the proba-
bility threshold that discriminates between two classes. Thus,
setting a threshold has a great effect on the performance of
the classifier. In this work, we use negative class to represent
benign traffic and positive class to indicate attack traffic.

The detection performance of a classifier is measured using
confusion matrix which includes True Positives (TP), True
Negatives (TN), False Positive (FP), and False Negatives (FN).



TABLE I: Network Attack Datasets for Training and Testing

Traffic Type Attack Name # Training Packets Training time (min.) # Testing Packets Test time (min.)

Legitimate Normal traffic 111,131 49 231,872 146
Denial of Service Attack SYN DoS - Direct 5,064 32 9,342 61

Reconnaissance Port Scans 18,743 29 39,239 64
Denial of Service Attack DDoS - Smurf 21,729 28 41,279 58

Although confusion matrix captures all the information about a
classifier performance but is not a scalar. Thus, we measure the
detection performance of IOT-NETSEC prototype using True
Positive Rate (TPR) metric.

TPR also known as positive recall or sensitivity indicates
the fraction of all malicious packets that IOT-NETSEC cor-
rectly detected as attack and is computed as:

TPR =
TP

TP + FN
(1)

We measure the performance of the prototype using sen-
sitivity metric when the classifier threshold is selected so that
the fraction of benign traffic that accidentally classified as
malicious is very low (i.e. 0.004) and zero. Such thresholds
are set by False Positive Rate which is computed as

FPR =
FP

FP + TN
(2)

E. Detection Performance

Figure 3a shows TPR of IOT-NETSEC prototype for dif-
ferent networking attacks on the network of three IoT devices
when the threshold is selected so that FPR is zero. In machine
learning detection, it is important that false alarm rates should
be minimum to save analysis time to investigate each alarm. To
compare the affect of false alarms on detection performance,
we performed another experiment and set the classification
threshold so that FPR to be very low. The first step of very
low FPR in our experiment was 0.004. Similarly, Figure 3b
shows TPR of IOT-NETSEC prototype when FPR is 0.004.

Note that in our experiment, the widow size was set to
three as stated in Section III-A1. Thus, there were four features
in our classification algorithm as mentioned in Section III-C.
We computed TPR by monitoring traffic for signs of three
types of network attacks including SYN DoS Flooding , port
scanning, and DDoS. TPR is calculated for each individual
attack separately. The measurements were made once the
attacks targeting each individual IoT device in our network.

The low FPR demonstrates that our detection algorithm is
less likely to label a benign traffic as an attack one. Finally,
note that these performance achieved with two parameter set-
tings. There is a trade-off between the detection performance
and two parameters including the window size that updates
counter statistics associated with flow entries and scraping
interval that time series data base queries the switch. Better
detection performance can be achieved by higher window size
and lower scraping interval. However, this come at the cost
of a larger memory size and computation power required by

IOT-NETSEC. The users of IOT-NETSEC have this flexibility
to adjust these parameters according to the requirements of
security goals and available resources.

IV. RELATED WORK

The SDN architecture with its rich functionalities in traffic
monitoring, optimising, and management enables applications
on SDN controllers to perform security tasks using dynamic
software programs. There is a growing body of research work
proposing SDN to meet security challenges in IoT environ-
ments. Bull et al. [21] proposed the use of an SDN gateway as a
distributed means of monitoring the traffic originating from and
directed to IoT based devices. However, their approach is not
a viable solution for most of IoT systems as IoT gateways are
not typically programable. Shif et al. [22] proposed a SD-VPN
architecture to address security and scalability issues of IoT
systems using traffic separation provided by VPN and network
service chaining based on SDN. Flauzac et al. [23] addressed
security policy dissemination across multiple SDN domains
using SDN-based IoT architecture. On device availability for
IoT, Lee et al. [24] assessed the impact of DoS attacks on IoT
gateways through simulation. However, no solution is proposed
to mitigate such attacks.

These prior works on using SDN to address security issues,
either assumed that the network is only consist of IoT devices
or proposed a general-purpose security application to both
IoT systems and conventional computer network systems. The
work in this paper differs from that above work in two different
aspects. First, it performs network-level security monitoring
only for a particular network segment which includes only IoT
devices and leave the responsibility of security monitoring for
networked computers to well-matured security applications for
conventional computer network systems. This will reduce a
significant load on security applications on SDN controller.
Second, it uses a vigilance dynamic policy-based security
approach that should be created and updated for each class
of devices. In this way, our proposal adapts to the traffic char-
acteristics of IoT devices and also enables security applications
to learn temporal and spatial context to provide more accurate
detection.

V. CONCLUSION

IoT promises great benefits and opportunities for indi-
viduals and businesses. However, there exists an increasing
concerns about its security and privacy. We have presented
IOT-NETSEC to prevent illegitimate access to IoT devices
and protect IoT network to be compromised or to be target
of network service attacks such as port scanning, DoS, and
DDoS. We described IOT-NETSEC’s design and its prototype



SYN DoS Flooding

0

0.2

0.4

0.6

0.8

1

Philips Hue Light Bulb

WeMo Switch and Motion Sensor

Port Scanning

0

0.2

0.4

0.6

0.8

1

DDoS - Smurf Attack

0

0.2

0.4

0.6

0.8

1

T
P

R

(a) True Positive Rates at FPR=0

SYN DoS Flooding

0

0.2

0.4

0.6

0.8

1

Philips Hue Light Bulb

WeMo Switch and Motion Sensor

Port Scanning

0

0.2

0.4

0.6

0.8

1

DDoS - Smurf Attack

0

0.2

0.4

0.6

0.8

1

T
P

R

(b) True Positive Rates at FPR=0.004

Fig. 3: Detection Performance.

implementation using the Faucet SDN controller. The feasibil-
ity of the prototype demonstrated through conducting extensive
experiments in a real smart home IoT network.

REFERENCES

[1] (2016) Hacked Cameras, DVRs Powered To-
day’s Massive Internet Outage. Kerbs on Secu-
rity. [Online]. Available: https://krebsonsecurity.com/2016/10/
hacked-cameras-dvrs-powered-todays-massive-internet-outage/

[2] (2017) BrickerBot Author Claims He Bricked
Two Million Devices. Bleeping Computer. [On-
line]. Available: https://www.bleepingcomputer.com/news/security/
brickerbot-author-claims-he-bricked-two-million-devices/

[3] M. Nobakht, Y. Sui, A. Seneviratne, and W. Hu, “Permission Analysis
of Health and Fitness Apps in IoT Programming Frameworks,” in
17th IEEE International Conference On Trust, Security And Privacy In
Computing And Communications, ser. IEEE TrustCom ’18, Aug 2018,
pp. 533–538.

[4] (2014) The Internet of Things is wildly insecure and unpatchable.
Wired. [Online]. Available: https://www.wired.com/2014/01/
theres-no-good-way-to-patch-the-internet-of-things-and-thats-a-huge#
-problem/

[5] (2018) IoT Attack Surface Area. OWASP. [Online]. Avail-
able: {https://www.owasp.org/index.php/OWASP Internet of Things
Project#IoT Attack Surface Areas Project}

[6] (2016) Search engine lets users find live
video of sleeping babies. The Guardian. [On-
line]. Available: https://www.theguardian.com/technology/2016/jan/25/
search-engine-lets-users-find-live-video-of-sleeping-babies

[7] N. Feamster, “Outsourcing Home Network Security,” in Proceedings
of the 2010 ACM SIGCOMM Workshop on Home Networks, ser.
HomeNets ’10, 2010, pp. 37–42.

[8] A. Gupta, R. Birkner, M. Canini, N. Feamster, C. Mac-Stoker, and
W. Willinger, “Network Monitoring As a Streaming Analytics Problem,”
in Proceedings of the 15th ACM Workshop on Hot Topics in Networks,
ser. HotNets ’16, 2016, pp. 106–112.

[9] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack
detection using NOX/OpenFlow,” in 35th IEEE Conference on Local
Computer Networks, ser. LCN, Oct 2010, pp. 408–415.

[10] C. Gonzalez, S. M. Charfadine, O. Flauzac, and F. Nolot, in Interna-
tional Multidisciplinary Conference on Computer and Energy Science,
ser. SpliTech.

[11] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “Dream: Dynamic
resource allocation for software-defined measurement,” in ACM Con-
ference of the Special Interest Group on Data Communication, ser.
SIGCOMM ’14, 2014, pp. 419–430.

[12] M. Nobakht, V. Sivaraman, and R. Boreli, “A Host-Based Intrusion
Detection and Mitigation Framework for Smart Home IoT Using
OpenFlow,” in 11th International Conference on Availability, Reliability
and Security, ser. ARES ’16, Aug 2016, pp. 147–156.

[13] N. Jiang and L. Gruenwald, “Research issues in data stream association
rule mining,” the Special Interest Group on Management of Data,
vol. 35, no. 1, pp. 14–19, Mar. 2006.

[14] (2018) Faucet Homepage. [Online]. Available: https://faucet.nz/
[15] J. Bailey and S. Stuart, “Faucet: Deploying SDN in the Enterprise,”

Queue, vol. 14, no. 5, pp. 30:54–30:68, Oct. 2016.
[16] (2018) Prometheus Homepage. [Online]. Available: https://prometheus.

io/
[17] (2018) Allied Telesis x930 switch. [Online]. Available: https:

//www.alliedtelesis.com/sites/default/files/ati-x930series-ds.pdf
[18] (2015) Scapy Webpage. [Online]. Available: http://www.secdev.org/

projects/scapy/
[19] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker,

“Extending Networking into the Virtualization Layer,” in 8th ACM
Workshop on Hot Topics in Networks, ser. HotNets, October 2009.

[20] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A Training Algorithm
for Optimal Margin Classifiers,” in Proceedings of the Fifth Annual
Workshop on Computational Learning Theory, ser. COLT ’92, 1992,
pp. 144–152.

[21] P. Bull, R. Austin, E. Popov, M. Sharma, and R. Watson, “Flow
Based Security for IoT Devices Using an SDN Gateway,” in 4th IEEE
International Conference on Future Internet of Things and Cloud, ser.
FiCloud, Aug 2016, pp. 157–163.

[22] L. Shif, F. Wang, and C. Lung, “Improvement of security and scalability
for IoT network using SD-VPN,” in IEEE/IFIP Network Operations and
Management Symposium, ser. NOMS, April 2018, pp. 1–5.

[23] O. Flauzac, C. Gonzalez, A. Hachani, and F. Nolot, “SDN Based
Architecture for IoT and Improvement of the Security,” in 29th IEEE
International Conference on Advanced Information Networking and
Applications Workshops, March 2015, pp. 688–693.

[24] Y. Lee, W. Lee, G. Shin, and K. Kim, “Assessing the Impact of DoS
Attacks on IoT Gateway,” in Advanced Multimedia and Ubiquitous
Engineering. Springer Singapore, 2017, pp. 252–257.


